ОБНПрикладная биохимия и микробиология Applied Biochemistry and Microbiology

  • ISSN (Print) 0555-1099
  • ISSN (Online) 3034-574X

Метод анализа антимикробной активности пептидов с помощью экспрессии кодирующих их генов в клетках Escherichia coli

Код статьи
S0555109925010038-1
DOI
10.31857/S0555109925010038
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 61 / Номер выпуска 1
Страницы
25-34
Аннотация
Предложена система тестирования новых потенциальных антимикробных пептидов (АМП), основанная на экспрессии кодирующих их рекомбинантных генов в клетках Escherichia coli. Такой подход имеет ряд преимуществ по сравнению с использованием химически синтезированных пептидов, при этом оба подхода эффективно дополняют друг друга. Используемый метод не налагает ограничений на размер АМП, позволяет проводить массовый скрининг мутантных плазмидных библиотек, имеет меньшую стоимость по сравнению с использованием синтетических пептидов. Суть метода заключается в трансформации модельной грамотрицательной бактерии E. coli плазмидами, несущими в себе рекомбинантный ген, кодирующий АМП, под контролем индуцибельного промотора. После индукции транскрипции бактерии синтезируют АМП, что приводит их к гибели. Детекцию роста бактерий проводят либо путем измерения оптической плотности жидкой культуры, выращиваемой в микропланшете, либо путем капельного высева серийных разведений культуры на агаризованную питательную среду.
Ключевые слова
антимикробные пептиды Escherichia coli тест-система плазмиды
Дата публикации
12.09.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
13

Библиография

  1. 1. Muteeb G., Rehman M.T., Shahwan M., Aatif M. // Pharmaceuticals. 2023. V. 16. № 11. P. 1615. https://doi.org/10.3390/ph16111615
  2. 2. Salam Md.A., Al-Amin Md.Y., Salam M.T., Pawar J.S., Akhter N., Rabaan A.A., Alqumber M.A.A. // Healthcare. 2023. V. 11. № 13. P. 1946. https://doi.org/10.3390/healthcare11131946
  3. 3. Mba I.E., Nweze E.I. // Yale J. Biol. Med. 2022. V. 95. № 4. P. 445–463.
  4. 4. Moretta A., Scieuzo C., Petrone A.M., Salvia R., Manniello M.D., Franco A. et al. // Front. Cell. Infect. Microbiol. 2021. V. 11. P. 668632. https://doi.org/10.3389/fcimb.2021.668632
  5. 5. Browne K., Chakraborty S., Chen R., Willcox M.D., Black D.S., Walsh W.R., Kumar N. // IJMS. 2020. V. 21. № 19. P. 7047. https://doi.org/10.3390/ijms21197047
  6. 6. Kumar P., Kizhakkedathu J., Straus S. // Biomolecules. 2018. V. 8. № 1. P. 4. https://doi.org/10.3390/biom8010004
  7. 7. Huan Y., Kong Q., Mou H., Yi H. // Front. Microbiol. 2020. V. 11. P. 582779. https://doi.org/10.3389/fmicb.2020.582779
  8. 8. Galzitskaya O.V. // IJMS. 2023. V. 24. № 11. P. 9451. https://doi.org/10.3390/ijms24119451
  9. 9. Agüero-Chapin G., Antunes A., Marrero-Ponce Y. // Antibiotics. 2023. V. 12. № 6. P. 1011. https://doi.org/10.3390/antibiotics12061011
  10. 10. Yan J., Cai J., Zhang B., Wang Y., Wong D.F., Siu S.W.I. // Antibiotics. 2022. V. 11. № 10. P. 1451. https://doi.org/10.3390/antibiotics11101451
  11. 11. Bakare O.O., Gokul A., Niekerk L.-A., Aina O., Abiona A., Barker A.M., et al. // IJMS. 2023. V. 24. № 14. P. 11864. https://doi.org/10.3390/ijms241411864
  12. 12. Bin Hafeez A., Jiang X., Bergen P.J., Zhu Y. // IJMS. 2021. V. 22. № 21. P. 11691. https://doi.org/10.3390/ijms222111691
  13. 13. Dini I., De Biasi M.-G., Mancusi A. // Antibiotics. 2022. V. 11. № 11. P. 1483. https://doi.org/10.3390/antibiotics11111483
  14. 14. Cardoso M.H., Orozco R.Q., Rezende S.B., Rodrigues G., Oshiro K.G.N., Cândido E.S., Franco O.L. // Front. Microbiol. 2020. V. 10. P. 3097. https://doi.org/10.3389/fmicb.2019.03097
  15. 15. Yoshida M., Hinkley T., Tsuda S., Abul-Haija Y.M., McBurney R.T., Kulikov V. et al. // Chem. 2018. V. 4. № 3. P. 533–543. https://doi.org/10.1016/j.chempr.2018.01.005
  16. 16. Aronica P.G.A., Reid L.M., Desai N., Li J., Fox S.J., Yadahalli S. et al. // J. Chem. Inf. Model. 2021. V. 61. № 7. P. 3172–3196. https://doi.org/10.1021/acs.jcim.1c00175
  17. 17. Merrifield R.B., Stewart J.Morrow., Jernberg Nils. // Anal. Chem. 1966. V. 38. № 13. P. 1905–1914. https://doi.org/10.1021/ac50155a057
  18. 18. Bello-Madruga R., Torrent Burgas M. // Comput. Struct. Biotechnol.J. 2024. V. 23. P. 972–981. https://doi.org/10.1016/j.csbj.2024.02.008
  19. 19. Zhang H.-Q., Sun C., Xu N., Liu W. // Front. Immunol. 2024. V. 15. P. 1326033. https://doi.org/10.3389/fimmu.2024.1326033
  20. 20. Steiner H., Hultmark D., Engström Å., Bennich H., Boman H.G. // Nature. 1981. V. 292. № 5820. P. 246–248. https://doi.org/10.1038/292246a0
  21. 21. Casteels P., Ampe C., Jacobs F., Vaeck M., Tempst P. // The EMBO Journal. 1989. V. 8. № 8. P. 2387–2391. https://doi.org/10.1002/j.1460-2075.1989.tb08368.x
  22. 22. Grafskaia E.N., Pavlova E.R., Latsis I.A., Malakhova M.V., Ivchenkov D.V., Bashkirov P.V., et al. // Materials & Design. 2022. V. 224. P. 111364. https://doi.org/10.1016/j.matdes.2022.111364
  23. 23. Klock H.E., Lesley S.A. High Throughput Protein Expression and Purification. / Ed. S.A. Doyle. Totowa, NJ: Humana Press, 2009. V. 498. P. 91–103. https://doi.org/10.1007/978-1-59745-196-3_6
  24. 24. Wiegand I., Hilpert K., Hancock R.E.W. // Nat. Protoc. 2008. V. 3. № 2. P. 163–175. https://doi.org/10.1038/nprot.2007.521
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека