RAS BiologyПрикладная биохимия и микробиология Applied Biochemistry and Microbiology

  • ISSN (Print) 0555-1099
  • ISSN (Online) 3034-574X

New Agronomically Valuable Strains of the Genus Streptomyces and Their Biochemical Characteristics

PII
S0555109925010096-1
DOI
10.31857/S0555109925010096
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 1
Pages
89-99
Abstract
Organic farming is a global trend that increases the demand for biological preparations for use in agricultural production. The paper characterizes new actinomycete isolates from soil samples taken in various agrocenoses of the Vyatka-Kama Urals. As a result of preliminary testing (about 350 strains), strains 8Al3, N27-25 and P15-2 were isolated on the basis of antifungal activity. The cultures were identified by 16S rRNA as bacteria of the genus Streptomyces. The active substance with antifungal effect — scopafungin was identified using HPLC-MS/MS. Along with the inhibitory effect on phytopathogenic fungi, these strains produce auxins in the presence of 100 mcg/ml of L-tryptophan (17.4–20.8 mcg/ml), have cellulolytic activity and have a stimulating effect on germination and accumulation of dry biomass by wheat, clover and mustard seedlings. Possessing a complex of beneficial properties for plants, Streptomyces strains 8Al3, N27-25 and P15-2 can be used as candidates for the creation of biological preparations with fungicidal and phytostimulating effects.
Keywords
стрептомицеты биофунгициды ростстимуляция ауксины целлюлаза контроль фитопатогенов
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
17

References

  1. 1. The World of Organic Agriculture. Statistics and Emerging Trends 2024. /Eds. H. Willer, J. Trávníček, S. Schlatter. Research Institute of Organic Agriculture FiBL, Frick, and Bonn. IFOAM — Organics International, 2024. 352 p.
  2. 2. Pérez-Montaño F., Alías-Villegas C., Bellogín R.A., del Cerro P., Espuny M.R., Jiménez-Guerrero I. et al. // Microbiol. Res. 2014. V. 169. P. 325–336. https://doi.org/10.1016/j.micres.2013.09.011
  3. 3. Basu A., Prasad P., Das S.N., Kalam S., Sayyed R.Z., Reddy M.S., El Enshasy H. // Sustainability. 2021. V. 13. P. 1–20. https://doi.org/10.3390/su13031140
  4. 4. Seipke R.F., Kaltenpoth M., Hutchings M.I.//FEMS Microbiol. Rev. 2012. V. 36. P. 862–876. https://doi.org/10.1111/j.1574-6976.2011.00313.x
  5. 5. Bonaldi M., Chen X., Kunova A., Pizzatti, C., Saracchi M., Cortesi P.// Front. Microbiol. 2015 V. 6. P. 25. https://doi.org/10.3389/fmicb.2015.00025
  6. 6. Javed Z., Tripathi G. D., Mishra M., Dashora K.// Biocatal. Agric. Biotechnol. 2021. V. 31. Р. 101893. https://doi.org/10.1016/j.bcab.2020.101893
  7. 7. Павлюшин В.А., Новикова И.И., Бойкова И.В. // Сельскохозяйственная биология. 2020. Т. 55. №. 3. С. 421–438. https://doi.org/10.15389/agrobiology.2020.3.421rus
  8. 8. Cordovez V., Carrion V. J., Etalo D.W., Mumm R., Zhu H., van Wezel, G.P., Raaijmakers J.M. // Front. Microbiol. 2015. V. 6. P. 1081. https://doi.org/10.3389/fmicb.2015.01081
  9. 9. Viaene T., Langendries S., Beirinckx S., Maes M., Goormachtig S. // FEMS Microbiol. Ecol. 2016. V. 92. № 8. https://doi.org/10.1093/femsec/fiw119
  10. 10. Basic Biology and Applications of Actinobacteria. / Ed. Enany S. (Ed.). IntechOpen, 2018. P. 99–122.
  11. 11. Vurukonda S.S. K.P., Giovanardi D., Stefani E. // Int. J. Mol. Sci. 2018. V. 19. №. 4. P. 952. https://doi.org/10.3390/ijms19040952
  12. 12. Pacios-Michelena S., Aguilar Gonzalez C.N., Alvarez-Perez O.B., Rodriguez-Herrera R., Chávez-González M., Arredondo Valdes R., Ilyina A. // Front. Sustain. Food Syst. 2021. V. 5. P. 696518. https://doi.org/10.3389/fsufs.2021.696518
  13. 13. Rey T., Dumas B. // Trends in Plant Science. 2017. V. 22. №. 1. P. 30–37. https://doi.org/10.1016/j.tplants.2016.10.008
  14. 14. Suprapta D.N. // J. ISSAAS. 2012. V. 18. №. 2. P. 1–8.
  15. 15. Широких И.Г., Бакулина А.В., Назарова Я.И., Широких А.А., Козлова Л.М. // Микология и фитопатология. 2020. Т. 54. № 1. С. 59–66. https://doi.org/10.31857/S0026364820010080
  16. 16. Komaki H., Tamura T. // Int. J. Syst. Evol. Microbiol. 2020. V. 70. P. 1099–1105. https://doi.org/10.1099/ijsem.0.003882
  17. 17. Shirling E.B., Gottlieb D. // Int. J. Syst. Bacteriol. 1966. V. 16. P. 313–340. https://doi.org/10.1099/00207713-16-3-313
  18. 18. Tamura K., Stecher G., Kumar S. // Mol. Biol. Evol. 2021. V. 38. № 7. P. 3022–3027. https://doi.org/10.1093/molbev/msab120
  19. 19. Гаузе Г.Ф., Преображенская Т.П., Свешникова М.А., Терехова Л.П., Максимова Т.С. Определитель актиномицетов. М.: Наука, 1983. 245 с.
  20. 20. Ryan M.C., Stucky M., Wakefield C., Melott J.M., Akbani R., Weinstein J.N., Broom B.M. // F1000Res. (ISCB Comm J). 2019. V. 8. P. 1750. https://doi.org/10.12688/f1000research.20590.2
  21. 21. Ghose T.K. // Pure & Appl. Chem. 1987. V. 59. № 2. P. 257–268.
  22. 22. Song X., Yuan G., Li P., Cao S. // Molecules. 2019. V. 24. P. 3913. https://doi.org/10.3390/molecules24213913
  23. 23. Wang Z., Gao C., Yang J., Du R., Zeng F., Bing H., Liu C. // Front. Microbiol. 2023. V. 14. P. 1243610. https://doi.org/10.3389/fmicb.2023.1243610
  24. 24. Kim H.Y., Kim J.D., Hong J.S., Ham J.H., Kim B.S. // J. Basic. Microbiol. 2013. V. 53. P. 581–589. https://doi.org/10.1002/jobm.201200045
  25. 25. Reusser F. // Biochem. Pharmacol. 1972. V. 21. P. 1031–1038. https://doi.org/10.1016/0006-2952 (72)90408-x
  26. 26. Mogi T., Matsushita K., Murase Y., Kawahara K., Miyoshi H., Ui H. et al. // FEMS Microbiol. Lett. 2009. V. 291. P. 157–161. https://doi.org/10.1111/j.1574-6968.2008.01451.x
  27. 27. Nakayama K., Yamaguchi T., Doi T., Usuki Y., Taniguchi M., Tanaka T. // J. Biosci. Bioeng. 2002. V. 94. P. 207–211. https://doi.org/10.1263/jbb.94.207
  28. 28. Fei P., Yang X., Lu-jie C., Hong J., Yun-yang L. // Natural Product Research & Development. 2011. V. 23. № 5. P. 809–814.
  29. 29. Fei P., Wenzhou Z., Yangjun L., Yuee Z., Ping L., Yiwen Z., Linlin C. // Genome-based Analysis for the Biosynthetic Potential of Streptomyces sp. FIM 95-F1 Producing Antifungal Antibiotic Scopafungin. 2023. https://doi.org/10.21203/rs.3.rs-3052084/v1
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library