RAS BiologyПрикладная биохимия и микробиология Applied Biochemistry and Microbiology

  • ISSN (Print) 0555-1099
  • ISSN (Online) 3034-574X

Bioavailable Nanocomposition of Chitosan-copper Nanoparticles as an Alternative to Antibiotics in BroilerFeed

PII
S0555109925010051-1
DOI
10.31857/S0555109925010051
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 1
Pages
44-57
Abstract
Pathogens pose a serious threat to agriculture as they reduce the growth rate and efficiency of farm birds, animals and cause economic losses. Therefore, there is a need for their use despite all the negative effects of antibiotics and bacterial resistance to them, and therefore, there is a need for effective alternatives that exclude the use of vaccines and drugs. An aggregatively stable nanocomposition of chitosan-nanoparticles of copper with an average size of the latter 25–30 nm was developed. The bactericidal effect of the nanocomposition was shown in vitro on pathogenic bacteria Enterococcus faecalis and investigated in vivo in the composition of broiler chickens’ drink and feed in comparison with antibiotic “Maxus”, used in their diet, on a wide range of pathogenic microorganisms. It was shown that the number of bacteria in broilers was 1.88% when the nanocomposition was administered, which is more than two times less compared to the group where the antibiotic was used.
Keywords
нанокомпозиция хитозан наночастицы меди антибиотик бройлеры корм бактерицидность биодоступность
Date of publication
12.09.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Rahman M.M., Alam Tumpa M.A., Zehravi M., Sarker M.T., Yamin M.D., Islam M.R. et al. // Antibiotics. 2022. V. 11. №. 5. P. 667. https://doi.org/10.3390/antibiotics11050667
  2. 2. Burow E., Grobbel M., Tenhagen B.A., Simoneit C., Szabó I., Wendt D. et al. // Microb. Drug. Resist. 2020. V. 26. №. 9. P. 1098–1107. https://doi.org/10.1089/mdr.2019.0442
  3. 3. Hedman H.D., Vasco K.A., Zhang L. // Animals. 2020. V. 10. №. 8. 1264. https://doi.org/10.3390/ani10081264
  4. 4. Shang K., Wei B., Cha S.Y., Zhang J.F., Park J.Y., Lee Y.J. et al. //Animals. 2021. V. 11. №. 1. P. 154. https://doi.org/10.3390/ani11010154
  5. 5. Massé D.I., Cata Saady N.M., Gilbert Y. // Animals. 2014. V. 4. №. 2. P. 146–163. https://doi.org/10.3390/ani4020146
  6. 6. Chatellier V. Chatellier V. // Animal. 2021. V. 15. 100289. https://doi.org/10.1016/j.animal.2021.100289
  7. 7. Jomova K., Makova M., Alomar S. Y., Alwasel S. H., Nepovimova E., Kuca K. et al. // Chem. Biol. Interact. 2022. V. 367. 110173. https://doi.org/10.1016/j.cbi.2022.110173
  8. 8. Ruiz L.M., Libedinsky A., Elorza A.A. // Front. Mol. Biosci. 2021. V. 8. 711227. https://doi.org/10.3389/fmolb.2021.711227
  9. 9. Ognik K., Sembratowicz I., Cholewińska E., Jankows-ki J., Kozłowski K., Juśkiewicz J. et al. // Anim. Sci. J. 2018. Т. 89. №. 3. P. 579–588. https://doi.org/10.1111/asj.12956
  10. 10. Sharma M.C., Joshi C., Pathak N.N., Kaur H. // Res. Vet. Sci. 2005. Т. 79. №. 2. P. 113–123. https://doi.org/10.1016/j.rvsc.2004.11.015
  11. 11. Парахонский А.П. // Естественно-гуманитарные исследования. 2015. № 4 (10). С. 73–84.
  12. 12. Borkow G. // Curr. Chem. Biol. 2014. V. 8. №. 2. P. 89–102. https://doi.org/10.2174/2212796809666150227223857
  13. 13. Scott A., Vadalasetty K.P., Łukasiewicz M., Jaworski S., Wierzbicki M., Chwalibog A. et al. // J. Anim. Physiol. Anim. Nutr. (Berl.) 2018. Т. 102. №. 1. P. e364–e373. https://doi.org/10.1111/jpn.12754
  14. 14. Sharif M., Rahman M.A.U., Ahmed B., Abbas R.Z., Hassan F.U. // Biol. Trace Elem. Res. 2021. V. 199. №. 10. P. 3825–3836. https://doi.org/10.1007/s12011-020-02485-1
  15. 15. Leeson S. // J. World’s Poult. Sci. 2009. V. 65. №. 3. P. 353–366. https://doi.org/10.1017/S0043933909000269
  16. 16. Boyles M. S. P., Ranninger C., Reischl R., Rurik M., Tessadri R., Kohlbacher O. et al. // Part. Fibre. Toxicol. 2015. V. 13. P. 1–20. https://doi.org/10.1186/s12989-016-0160-6
  17. 17. Ремпель А. А. // Успехи химии. 2007. Т. 76. №. 5. С. 474–500.
  18. 18. Mitchell M.J., Billingsley M.M., Haley R.M., Wechsler M.E., Peppas N.A., Langer R. // Nat. Rev. Drug Discov. 2021. V. 20. №. 2. P. 101–124. https://doi.org/10.1038/s41573-020-0090-8
  19. 19. Bezbaruah R., Chavda V.P., Nongrang L., Alom S., Deka K., Kalita T. et al. // Vaccines. 2022. V. 10. №. 11. 1946. https://doi.org/10.3390/vaccines10111946
  20. 20. Yusuf A., Almotairy A.R.Z., Henidi H., Alshehri O.Y., Aldughaim M.S. // Polymers. 2023. V. 15. № 7. 1596. https://doi.org/10.3390/polym15071596
  21. 21. Zafar A., Arshad R., Ur. Rehman A., Ahmed N., Akhtar H. // Vaccines. 2023. V. 11. №. 2. 490. https://doi.org/10.3390/vaccines11020490
  22. 22. El-Kassas S., El-Naggar K., Abdo S.E., Abdo W., Kirrella A.A., El-Mehaseeb I. et al. // Anim. Prod. Sci. 2019. V. 60. №. 2. P. 254–268. https://doi.org/10.1071/AN18270
  23. 23. Sizova E., Miroshnikov S., Lebedev S., Usha B., Shabunin S. // Anim. Nutr. 2020. V. 6. №. 2. P. 185–191. https://doi.org/10.1016/j.aninu.2019.11.007
  24. 24. El-Kazaz S.E., Hafez M.H. // J. Adv. Vet. Anim. Res. 2020. V. 7. №. 1. 16. https://doi.org/10.5455/javar.2020.g388
  25. 25. Anwar M.I., Awais M.M., AkhtarM., Navid M.T., Muhammad F. // Worlds Poult. Sci. J. 2019. V. 75. №. 2. P. 261–272. https://doi.org/10.1017/S0043933919000199
  26. 26. Kalińska A., Jaworski S., Wierzbicki M., Gołębiews-ki M. // Int. J. Mol. Sci. 2019. V. 20. №. 7. 1672. https://doi.org/10.3390/ijms20071672
  27. 27. Scott A., Vadalasetty K.P., Chwalibog A., Sawosz E. // Nanotechnol. Rev. 2018. V. 7. №. 1. P. 69–93. https://doi.org/10.1515/ntrev-2017-0159
  28. 28. Chen R.R., Li Y.J., Chen J.J., Lu C.L. // Carbohydr. Polym. 2020. V. 247. 116740. https://doi.org/10.1016/j.carbpol.2020.116740
  29. 29. Wang W., Xue C., Mao X. // Int. J. Biol. Macromol. 2020. V. 164. P. 4532–4546. https://doi.org/10.1016/j.ijbiomac.2020.09.042
  30. 30. Xu Y., Shi B., Yan S., Li J., Li T., Guo Y. et al. // Czech J. Anim. Sci. 2014. V. 59. P. 156–163. https://doi.org/10.17221/7339-CJAS
  31. 31. Sangnim T., Dheer D., Jangra N., Huanbutta K., Puri V., Sharma A. // Pharmaceutics. 2023. V. 15. № 9. 2361. https://doi.org/10.3390/pharmaceutics15092361
  32. 32. Apryatina K.V., Glazova I.A., Koryagin A.S., Zaitsev S.D., Smirnova L.A. // J. Polym. Res. 2022. V. 29. №. 9. 378. https://doi.org/10.1007/s10965-022-03225-w
  33. 33. Apryatina K.V., Murach E.I., Amarantov S.V., Erlykina E.I., Veselov V.S., Smirnova L.A. // Appl. Biochem. Microbiol. 2022. V. 58. №. 2. P. 126–131. https://doi.org/10.1134/S0003683822020028
  34. 34. Lang X., Wang T., Sun M., Chen X., Liu Y. // Int. J. Biol. Macromol. 2020. V. 154. P. 433–445. https://doi.org/10.1016/j.ijbiomac.2020.03.148
  35. 35. Hassan F.A., Abd El-Maged M., El-Halim H., Ramadan G. // J. Anim. Health Prod. 2021. V. 9. № 2. P. 119–131. https://doi.org/10.17582/journal.jahp/2021/9.2.119.131
  36. 36. Tufan T., Arslan C. // S. Afr. J. Anim. Sci. 2020. V. 50. №. 5. https://doi.org/10.4314/sajas.v50i5.3
  37. 37. Yue X., Hu L., Fu X., Lv M., Han X. // Czech J. Anim. Sci. 2017. V. 62. №. 1. P. 15–21. https://doi.org/10.17221/86/2015-CJAS
  38. 38. Menconi A., Pumford N.R., Morgan M.J., Bielke L.R., Kallapura G., Latorre J.D. et al. // Food. Pathog. Dis. 2014. V. 11. №. 2. P. 165–169. https://doi.org/10.1089/fpd.2013.1628
  39. 39. Nuengjamnong C., Angkanaporn K. // Ital. J. Anim. Sci. 2018. V. 17. №. 2. P. 428–435. https://doi.org/10.1080/1828051X.2017.1373609
  40. 40. Shagdarova B., Konovalova M., Varlamov V., Svirshchevskaya E. // Polymers. 2023. V. 15. №. 19. 3967. https://doi.org/10.3390/polym15193967
  41. 41. Akintelu S.A., Oyebamiji A.K., Olugbeko S.C., Latona D.F. // CRGSC. 2021. V. 4. 100176. https://doi.org/10.1016/j.crgsc.2021.100176
  42. 42. Liu P., Wang H., Li X., Rui M., Zeng H. // RSC Adv. 2015. V. 5. №. 97. P. 79738–79745. https://doi.org/10.1039/C5RA14933A
  43. 43. Ismail M. I. M. // Mater. Chem. Phys. 2020. V. 240. 122283. https://doi.org/10.1016/j.matchemphys.2019.122283
  44. 44. Лисичкин Г.В., Оленин А.Ю., Кулакова И.И. Химия поверхности неорганических наночастиц. М.: Техносфера, 2020. 380 с.
  45. 45. Хабриев Р.У. Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ. М.: Медицина, 2005. 827 с.
  46. 46. Апрятина К.В., Зайцев С.Д., Смирнова Л.А., Фролов В.Г. Патент RU 2776050C1. 2022.
  47. 47. Воюцкий С.С. Курс коллоидной химии. М.: “Химия”, 1975. 512 с.
  48. 48. Литманович О.Е. // Высокомолекулярные соединения. Серия C. 2008. Т. 50. № 7. С. 1370–1396.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library