RAS BiologyПрикладная биохимия и микробиология Applied Biochemistry and Microbiology

  • ISSN (Print) 0555-1099
  • ISSN (Online) 3034-574X

Ribosome Disorganization and Other Effects of Artificial RNase DL412 on Salmonella enterica Cells

PII
S3034574XS0555109925020025-1
DOI
10.7868/S3034574X25020025
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 2
Pages
128-138
Abstract
Cationic amphiphile DL412, which has RNase activity (D - DABCO (1,4-diazabicyclo[2.2.2]octane); L4 - tetramethylene linker; 12 - dodecyl residue), was synthesized at the ICBFM SB RAS, and showed pronounced antibacterial properties. A suspension of Salmonella enterica ATCC 14028 cells was incubated with DL412 (5 µM) for 15 and 30 min, or with ciprofloxacin (5 µM, reference compound). Intact cells served as controls. Samples were fixed with formaldehyde (4%, postfixed with 1% OsO4), or by the Reiter-Kellenberger method (1% OsO4, postfixed with 0.5% uranyl acetate), dehydrated and embedded into an Epon-Araldite mixture. Ultrathin sections were examined using an electron microscope Jem 1400 (“Jeol”, Japan). Within 15 min of incubation with compound DL412, visible ribosomes disappeared throughout the cytoplasm of S. enterica cells; In the periplasmic space, a homogeneous substance of average electron density was observed, its penetration into the cytoplasm was noted, in which polymorphic inclusions appeared. The ultrastructure of the nucleoids was significantly disrupted; they became rounded, and the DNA strands “stick together” into bundles. The ultrastructure of the outer membrane remained unchanged. The observed changes in the structure of S. enterica are due to a combination of RNase activity and amphiphilic properties of DL412 and did not differ depending on the fixation method. Such changes were not described in any publication. Our study made it possible for the first time to visualize the influence of RNase activity and the amphiphilic component of the compound DL412, which penetrated into the cell through two bacterial membranes without their visible damage.
Keywords
искусственная РНКаза катионный амфифил Salmonella enterica дезорганизация рибосом структура нуклеоида
Date of publication
13.11.2025
Year of publication
2025
Number of purchasers
0
Views
31

References

  1. 1. Thomas J.R., Hergenrother P.J. // Chem. Rev. 2008. V. 108. № 4. P. 1171-1224. https://doi.org/10.1021/cr0681546
  2. 2. Zhang L., He J., Bai L., Ruan S., Yang T., Luo Y. // Med. Res. Rev. 2021. V. 41. № 4. P. 1855-1889. https://doi.org/10.1002/med.21780
  3. 3. Yarinich L.A., Burakova E.A., Zakharov B.A., Boldyreva E.V., Babkina I.N., Tikunova N.V., Silnikov V.N. // Eur. J. Med. Chem. 2015. V. 95. № 563-573. https://doi.org/10.1016/j.ejmech.2015.03.033
  4. 4. Fedorova A.A., Azzami K., Ryabchikova E.I., Spitsyna Y.E., Silnikov V.N., Ritter W., et al. // Antiviral Res. 2011. V. 91. № 3. P. 267-277. https://doi.org/10.1016/j.antiviral.2011.06.011
  5. 5. Burakova E.A., Saranina I.V., Tikunova N.V., Nazarkina Z.K., Laktionov P.P., Karpinskaya L.A. et al. // Bioorg. Med. Chem. 2016. V. 24. № 22. P. 6012-6020. https://doi.org/10.1016/j.bmc.2016.09.064
  6. 6. Grigor’eva A.E., Bardasheva A.V., Ryabova E.S., Tupitsyna A.V., Zadvornykh D.A., Koroleva L.S. et al. // Microorganisms. 2023. V. 11. № 9. P. 2192. https://doi.org/10.3390/microorganisms11092192
  7. 7. Bonvin E., Personne H., Paschoud T., Reusser J., Gan B.H., Luscher A. et al. // ACS Infect. Dis. 2023. V. 9. № 12. P. 2593-2606. https://doi.org/10.1021/acsinfecdis.3c00421
  8. 8. Cardoso M.H., Meneguetti B.T., Costa B.O., Buccini D.F., Oshiro K.G.N., Preza S.L.E. et al.// Int. J. Mol. Sci. 2019. V. 20. № 19. P. 4877. https://doi.org/10.3390/ijms20194877
  9. 9. Majalekar P.P., Shirote P.J. // Curr. Drug Targets. 2020. V. 21. № 13. P. 1354-1370. https://doi.org/10.2174/1389450121666200621193355
  10. 10. Zadvornykh D., Zhang Z., Liu C., Serpokrylovа I., Bardashevа A., Tikunova N., Silnikov V., Koroleva L. // Int. J. of Health Sci. 2022. V. 6. № S7. P. 3009-3023. https://doi.org/10.53730/ijhs.v6nS7.12110
  11. 11. Wang Z., Liu X., Da T., Mao R., Hao Y., Yang N. et al. // Commun. Biol. 2020. V. 3. № 1. P. 41. https://doi.org/10.1038/s42003-020-0761-3
  12. 12. Kuzminov A. // J. Bacteriol. 2024. V. 206. № 3. P. e0021123. https://doi.org/10.1128/jb.00211-23
  13. 13. Grigor’eva A., Bardasheva A., Tupitsyna A., Amirkhanov N., Tikunova N., Pyshnyi D., Ryabchikova E. // Microorganisms. 2020. V. 8. № 12. P. 1991. https://doi.org/10.3390/microorganisms8121991
  14. 14. Sharma P., Vaiwala R., Gopinath A.K., Chockalingam R., Ayappa K.G. // Langmuir. 2024. V. 40. № 15. P. 7791- 7811. https://doi.org/10.1021/acs.langmuir.3c03474
  15. 15. Maher C., Hassan K.A. // mBio. 2023. V. 14. № 6. P. e0120523. https://doi.org/10.1128/mbio.01205-23
  16. 16. Lin J., Zhou D., Steitz T.A., Polikanov Y.S., Gagnon M.G. // Annu. Rev. Biochem. 2018. V. 87. № 451-478. https://doi.org/10.1146/annurev-biochem-062917-011942
  17. 17. Brielle R., Pinel-Marie M.L., Chat S., Gillet R., Felden B. // Methods. 2017. V. 117. P. 59-66. https://doi.org/10.1016/j.ymeth.2016.10.003
  18. 18. Cougot N., Molza A.E., Delesques J., Giudice E., Cavalier A., Rolland J.P., et al. // J. Mol. Biol. 2014. V. 426. № 2. P. 377-388. https://doi.org/10.1016/j.jmb.2013.09.035
  19. 19. Herrero Del Valle A., Innis C.A. // FEMS Microbiol. Rev. 2020. V. 44. № 6. P. 793-803. https://doi.org/10.1093/femsre/fuaa032
  20. 20. Razi A., Britton R.A., Ortega J. // Nucleic Acids Res. 2017. V. 45. № 3. P. 1027-1040. https://doi.org/10.1093/nar/gkw1231
  21. 21. Ohniwa R.L., Morikawa K., Takeshita S.L., Kim J., Ohta T., Wada C., Takeyasu K. // Genes Cells. 2007. V. 12. № 10. P. 1141-1152. https://doi.org/10.1111/j.1365-2443.2007.01125.x
  22. 22. Ishihama A. // EcoSal Plus. 2009. V. 3. № 2. https://doi.org/10.1128/ecosalplus.2.6
  23. 23. Dillon S.C., Dorman C.J. // Nat. Rev. Microbiol. 2010. V. 8. № 3. P. 185-195. https://doi.org/10.1038/nrmicro2261
  24. 24. Birnie A., Dekker C. // ACS Nano. 2021. V. 15. № 1. P. 111-124. https://doi.org/10.1021/acsnano.0c07397
  25. 25. Bakshi S., Choi H., Weisshaar J.C. // Front. Microbiol. 2015. V. 6. № 636. https://doi.org/10.3389/fmicb.2015.00636
  26. 26. Zimmerman S.B. // J. Struct. Biol. 2006. V. 153. № 2. P. 160-175. https://doi.org/10.1016/j.jsb.2005.10.011
  27. 27. Khan S.R., Kuzminov A. // PLoS One. 2017. V. 12. № 12. P. e0190177. https://doi.org/10.1371/journal.pone.0190177
  28. 28. Horne J.E., Brockwell D.J., Radford S.E. // J. Biol. Chem. 2020. V. 295. № 30. P. 10340-10367. https://doi.org/10.1074/jbc.REV120.011473
  29. 29. Vergalli J., Bodrenko I.V., Masi M., Moynie L., Acosta-Gutierrez S. et al. // Nat. Rev. Microbiol. 2020. V. 18. № 3. P. 164-176. https://doi.org/10.1038/s41579-019-0294-2
  30. 30. Manrique P.D., Lopez C.A., Gnanakaran S., Rybenkov V.V., Zgurskaya H.I. // Ann. N. Y. Acad. Sci. 2023. V. 1519. № 1. P. 46-62. https://doi.org/10.1111/nyas.14921
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library