- PII
- S3034574XS0555109925020031-1
- DOI
- 10.7868/S3034574X25020031
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 61 / Issue number 2
- Pages
- 139-148
- Abstract
- Using directly engineered derivatives of previously constructed adipate-producing Escherichia coli MG1655 lacIQ, ∆ackA-pta, ∆poxB, ∆ldhA, ∆adhE, PL-SDϕ10-atoB, Ptrc-ideal-4-SDϕ10-fadB, ∆fadE, PL-SDϕ10-tesB, ∆yciA, Ptrc-ideal-4-SDϕ10-fabI, PL-SDϕ10-paaJ, ∆aceBAKϕ, ∆glcB и MG1655 lacIQ, ∆ackA-pta, ∆poxB, ∆ldhA, ∆adhE, PL-SDϕ 10-atoB Ptrc-ideal-4-SD ϕ10-fadB, PL-SDϕ10-tesB, ∆yciA, Ptrc-ideal-4-SDϕ10-fadE, PL-SDϕ10-paaJ, ∆aceBAK, ∆glcB the feasibility of suberic acid biosynthesis from glucose by this bacterium resulting from the reversal of the native fatty acid β-oxidation pathway was demonstrated. The condensation of acetyl-CoA with succinyl-CoA and adipyl-CoA was ensured in recombinants by 3-oxoadipyl-CoA thiolase PaaJ, whereas the putative acetyl-CoA C-acetyltransferase YqeF was unable to catalyse the respective reactions. The biosynthesis of ~60 µM suberic acid was achieved upon significant enhancement in the strains of the expression of the bifunctional (S)-3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA reductase gene, fadB. Subsequent inactivation of succinate dehydrogenase in the strains increased the intracellular availability of succinyl-CoA for the initiation of the first round of cycle reversal and favored an increase in the accumulation of the target compound by the recombinants to ~75 µM. The results provide a framework for the development of highly efficient producing strains for bio-based production of suberic acid from renewable raw materials.
- Keywords
- β-окисление жирных кислот метаболическая инженерия субериновая кислота тиолаза Escherichia coli
- Date of publication
- 12.11.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 22
References
- 1. Tarasava K., Lee S.H., Chen J., Köpke M., Jewett M.C., Gonzalez R. // J. Ind. Microbiol. Biotechnol. 2022. V. 49. № 2. kuac003. https://doi.org/10.1093/jimb/kuac003
- 2. Fujita Y., Matsuoka H., Hirooka K. // Mol. Microbiol. 2007. V. 66. № 4. P. 829-839.
- 3. Kim S., Cheong S., Chou A., Gonzalez R. // Curr. Opin. Biotechnol. 2016. V. 42. P.206-215. https://doi.org/10.1016/j.copbio.2016.07.004
- 4. Dellomonaco C., Clomburg J.M., Miller E.N., Gonzalez R. // Nature. 2011. V. 476. P. 355-359. https://doi.org/10.1038/nature10333
- 5. Gulevich A.Y., Skorokhodova A.Y., Sukhozhenko A.V., Shakulov R.S., Debabov V.G. // Biotechnol. Lett. 2012. V. 34. P. 463-469. https://doi.org/10.1007/s10529-011-0797-z
- 6. Mehrer C.R., Incha M.R., Politz M.C., Pfleger B.F. // Metab. Eng. 2018. V. 48. P. 63-71. https://doi.org/10.1016/j.ymben.2018.05.011
- 7. Chen J., Gonzalez R. // Metab. Eng. 2023. V. 79. P. 173-181. https://doi.org/10.1016/j.ymben.2023.07.007
- 8. Kim S., Clomburg J.M., Gonzalez R. // J. Ind. Microbiol. Biotechnol. 2015. V. 42. P. 465-75. https://doi.org/10.1007/s10295-015-1589-6
- 9. Kim S., Cheong S., Gonzalez R. // Metab. Eng. 2016. V. 36. P. 90-98. https://doi.org/10.1016/j.ymben.2016.03.005
- 10. Gulevich A.Y., Skorokhodova A.Y., Debabov V.G. // Biomolecules. 2024. V. 14. 449. http://doi.org/10.3390/biom14040449
- 11. Cheong S., Clomburg J.M., Gonzalez R. // Nat. Biotechnol. V. 34. № 5. P. 556-561. https://doi.org/10.1038/nbt.3505
- 12. Lang M., Li H. // ChemSusChem. 2022. V. 15. № 1. e202101531. https://doi.org/10.1002/cssc.202101531
- 13. Liao Z., Yeoh Y.K., Parumasivam T., Koh W.Y., Alrosan M., Alu’datt M.H., Tan T.C. // RSC Adv. 2024. V. 14. № 24. P. 17008-17021. https://doi.org/10.1039/d4ra02598a
- 14. Гулевич А.Ю., Скороходова А.Ю., Дебабов В.Г. // Прикл. биохимия и микробиология. 2023. Т. 59. № 3. С. 235-243.
- 15. Гулевич А.Ю., Скороходова А.Ю., Дебабов В.Г. // Прикл. биохимия и микробиология. 2023. Т. 60. № 3. С. 28-35.
- 16. Sambrook J., Fritsch E., Maniatis T. // Molecular Cloning: a Laboratory Manual, 2 nd Ed., N.Y.: Cold Spring Harbor Lab. Press, 1989. 1659 р.
- 17. Скороходова А.Ю., Стасенко А.А., Гулевич А.Ю., Дебабов В.Г. // Прикл. биохимия и микробиология. 2018. Т. 54. № 3. С. 244-252.
- 18. Skorokhodova A.Y., Gulevich A.Y., Debabov V.G. // Biotechnol. Rep. 2022. V. 33. e00703. http://doi.org/10.1016/j.btre.2022.e00703
- 19. Datsenko K.A., Wanner B.L. // Proc. Natl. Acad. Sci. USA. 2000. V. 97. № 12. Р. 6640-6645.
- 20. Каташкина Ж.И., Скороходова А.Ю., Зименков Д.В., Гулевич А.Ю., Минаева Н.И., Дорошенко В.Г., Бирюкова И.В., Машко С.В. // Молекулярная биология. 2005. Т. 39. № 5. С. 823-831.
- 21. Гулевич А.Ю., Скороходова А.Ю., Ермишев В.Ю., Крылов А.А., Минаева Н.И., Полонская З.М. и др. // Молекулярная биология. 2009. Т. 43. № 3. С. 547- 557.
- 22. Clark D.P., Cronan J.E. // EcoSal Plus. 2005. V. 1. 10.1128/ecosalplus.3.4.4. https://doi.org/10.1128/ecosalplus.3.4.4.
- 23. Binstock J.F., Schulz H. // Methods. Enzymol. 1981. V. 71. P. 403-411. https://doi.org/10.1016/0076-6879 (81)71051-6
- 24. Teufel R., Mascaraque V., Ismail W., Voss M., Perera J., Eisenreich W., Haehnel W., Fuchs G. // Proc. Natl. Acad. Sci. USA. 2010. V. 107. № 32. P. 14390-14395. https://doi.org/10.1073/pnas.1005399107
- 25. Deuschle U., Kammerer W., Gentz R., Bujard H. // EMBO J. 1986. V. 5. P. 2987-2994. https://doi.org/10.1002/j.1460-2075.1986.tb04596.x