RAS BiologyПрикладная биохимия и микробиология Applied Biochemistry and Microbiology

  • ISSN (Print) 0555-1099
  • ISSN (Online) 3034-574X

Effect of Fermentation by Lactobacilli on the Organoleptic Properties of Pea Protein Isolate

PII
S3034574XS0555109925020042-1
DOI
10.7868/S3034574X25020042
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 2
Pages
149-155
Abstract
The work investigated the effect of fermentation with three bacterial preparations (BK-Uglich-K, BK-Uglich-AV and BK-Uglich-P) on the smell and taste of pea protein isolate, as well as on the content of 1-hexanal, phytates and phenolic compounds in the isolate. It was shown that fermentation improves the odor characteristics of the isolate. It was possible to significantly reduce the severity of the bean smell and grassy smell, as well as reduce the content of 1-hexanal. At the same time, fermentation also improved the taste of the isolate: it was possible to significantly reduce the severity of such interfering flavors as bean, tart, bitter and grassy; at the same time, the content of phytates and phenolic compounds in the isolate decreased. The obtained results made it possible to select a bacterial preparation (BK-Uglich-AV) to improve the organoleptic parameters of pea protein isolates intended for the production of analogues of meat and dairy products.
Keywords
изолят белка гороха лактобациллы органолептические свойства
Date of publication
12.11.2024
Year of publication
2024
Number of purchasers
0
Views
30

References

  1. 1. Asen N.D., Aluko R.E., Martynenko A., Utioh A., Bhowmik P. // Foods. 2023. V. 12. № 21. 3978. https://doi.org/10.3390/foods12213978
  2. 2. Pei M., Zhao Z., Chen S., Reshetnik E.I., Gribanova S.L., Li C. et al. // Food Sience. 2022. V. 46. 101590. https://doi.org/10.1016/j.fbio.2022.101590
  3. 3. Li C., Chen X., Jin Z., Gu Z., Rao J., Chen B. // Food Funct. 2021. V. 12. № 15. P. 6950-6963. https://doi.org/10.1039/d1fo00608h
  4. 4. García Arteaga V, Leffler S, Muranyi I, Eisner P, Schweiggert-Weisz U.// Curr. Res. Food Sci. 2020. V. 4. P.1-10. https://doi.org/10.1016/j.crfs.2020.12.001
  5. 5. Ben-Harb S., Saint-Eve A., Panouillé M., Souchon I., Bonnarme P., Dugat-Bony E. et al. // Int. J. Food Microbiol. 2019. V. 293. P. 124-136. https://doi.org/10.1016/j.ijfoodmicro.2019.01.012
  6. 6. Shi Y., Singh A., Kitts D.D., Pratap-Singh A. // LWT. 2021. V. 150. 111927. https://doi.org/10.1016/j.lwt.2021.111927
  7. 7. Masiá C., Fernández-Varela R., Jensen P.E., Yazdi S.R. //Future Foods. 2023. V. 8. 100250. https://doi.org/10.1016/j.fufo.2023.100250
  8. 8. Vazquez-Munoz R., Dongari-Bagtzoglou A. // Front Oral Health. 2021. V. 2. Р. 689382. https://doi.org/10.3389/froh.2021.689382
  9. 9. Illikoud N, do Carmo FLR, Daniel N, Jan G, Gagnaire V. // Food Res Int. 2023. V. 166. 112557. https://doi.org/10.1016/j.foodres.2023.112557
  10. 10. Higgins T. J., Chandler P. M., Randall P. J., Spencer D., Beach L. R., Blagrove R. J. et al. // J. Biol. Chem. 1986. V. 261. P. 11124-11130. https://doi.org/10.1016/S0021-9258 (18)67357-0
  11. 11. Gao Y., Shang C., Saghai Maroof M. A., Biyashev R. M., Grabau E. A., Kwanyuen P. et al. // Crop Science. 2007. V. 47. P. 1797-1803. https://doi.org/10.2135/cropsci2007.03.0122
  12. 12. Malka M., Du Laing G., Kurešová G., Hegedüsová A., Bohn T. // Front Nutr. 2023. V. 10. 1083253. https://doi.org/10.3389/fnut.2023.1083253
  13. 13. Mannoubi IEl. // J. Umm Al-Qura Univ. Appll. Sci. 2023. V. 9. P 176-184. https://doi.org/10.1007/s43994-023-00031-y
  14. 14. García Arteaga V., Demand V., Kern K., Strube A., Szardenings M., Muranyi I. et al. // Foods. 2022. V. 11. № 1. Р. 118. https://doi.org/10.3390/foods11010118
  15. 15. Onyeoziri I.O., Kinnear M., de Kock H.L. // J. Sci. Food Agric. 2018. V. 98. № 6. P. 2231-2242. https://doi.org/10.1002/jsfa.8710
  16. 16. Rubio L.A., Pérez A., Ruiz R., Guzmán M.Á., Aranda-Olmedo I. // J. Sci. Food Agric. 2014. V. 94. № 2. P. 280-287. https://doi.org/10.1002/jsfa.6250
  17. 17. Murat C., Bard M.-H., Dhalleine C., Cayot N. // Food Res.Int. 2013. V. 53. P. 31-41. https://doi.org/10.1016/j.foodres.2013.03.049
  18. 18. Castro-Alba V., Lazarte C.E., Perez-Rea D., Sandberg A.S., Carlsson N.G., Almgren A. et al. // Food Sci. Nutr. 2019. V. 7. № 12. P. 3902-3911. https://doi.org/10.1002/fsn3.1247
  19. 19. Cosson A., Meudec E., Ginies C., Danel A., Lieben P., Descamps N. et al. // Food Chem. 2022. V. 385. Р. 132615. https://doi.org/10.1016/j.foodchem.2022.132615
  20. 20. Roland W.S.U., Pouvreau L., Curran J., van de Velde F., de Kok P.M.T. // Cereal Chem. 2017. V. 94. № 1. P. 58-65. https://doi.org/10.1094/CCHEM-06-16-0161-FI
  21. 21. Emkani M., Gourrat K., Oliete B., Saurel R. // J. Food Sci. 2024. V. 89. № 7. P. 4229-4249. https://doi.org/10.1111/1750-3841.17145
  22. 22. Kravchenko I.V., Furalyov V.A., Pshennikova E.S., Fedorov A.N., Popov V.O. // Appl. Biochem. Microbiol. 2024. V. 60. № 6. in press. https://doi.org/10.1134/S0003683824605493
  23. 23. Kravchenko I.V., Furalyov V.A., Pshennikova E.S., Kostyleva E.V., Sereda A.S., Kurbatova E.I. et al. // Appl. Biochem Microbiol. 2024. V. 60. № 4. P. 656-662. https://doi.org/10.1134/S0003683824604335
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library