RAS BiologyПрикладная биохимия и микробиология Applied Biochemistry and Microbiology

  • ISSN (Print) 0555-1099
  • ISSN (Online) 3034-574X

Modulation of Antioxidant Enzyme Activity Levels and Chaperone Levels in Different Genotypes Under Heat Stress

PII
S3034574XS0555109925020069-1
DOI
10.7868/S3034574X25020069
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 2
Pages
162-171
Abstract
Factors determining plant resistance to abiotic stress include many stress defense systems. The most significant of them are the antioxidant and chaperone systems. However, the mechanisms of interaction between these systems have not been sufficiently studied. In this work, we studied the effect of heat stress on the activity levels of antioxidant enzymes (superoxide dismutase; SOD and catalase; CAT) and the levels of heat shock proteins (cytoplasmic HSP70 and chloroplast HSP70B) in the leaves of pumpkin seedlings of three genotypes (, , ) differing in their resistance to environmental stress. It was shown that under heat stress, the levels of CAT activity increased in all the studied genotypes. After heat stress, a noticeable drop (48.9%) in the level of CuZn-SOD activity was shown in , compared with an increase in the enzyme activity by (2-14.6%) in the other two genotypes. The level of cytoplasmic HSP70 proteins decreased by 36, and chloroplast HSP70B by 34% in plant cells after heat stress. In contrast, the level of cytoplasmic heat shock proteins HSP70 increased in and genotypes by 20 and 18%, respectively, and in the case of chloroplast HSP70B proteins, the increase was 43 and 10%. It was found that the modulation of the activity levels of CuZn-SOD (the main representative of the enzyme in the cell) and the levels of cytoplasmic HSP70 and chloroplast HSP70B chaperones in genotypes is coordinated, indicating the interaction of these two cellular defense systems under heat stress. Thus, HSP70, HSP70B levels and CuZn-SOD activity levels are reliable early warning signals of heat stress, allowing the stress to be detected before it causes serious damage to the plant.
Keywords
Array антиоксидантные ферменты белки теплового шока HSP70 тепловой стресс
Date of publication
10.11.2024
Year of publication
2024
Number of purchasers
0
Views
22

References

  1. 1. Mishra N., Jiang C., Chen L., Paul A., Chatterjee A., Shen G. // Front. Plant Sci. 2023. V. 14. 1110622. https://doi.org/10.3389/fpls.2023.1110622
  2. 2. Miller G., Suzuki N., Ciftci-Yilmaz S., Mittler R. // Plant, Cell & Enviro. 2010. V. 33. P. 453-467. https://doi.org/10.1111/j.1365-3040.2009.02041.x
  3. 3. Zandalinas S.I., Balfagón D., Arbona V., Gómez-Cadenas A. // Front. Plant Sci. 2017. V. 8. 953. https://doi.org/10.3389/fpls.2017.00953
  4. 4. Katano K., Honda K., Suzuki N. // Int. J. Mol. Sci. 2018. V. 19. 3370. https://doi.org/10.3390/ijms19113370
  5. 5. Arbona V., Hossain Z., López-Climent M.F., Pérez-Clemente R.M., Gómez-Cadenas A. // Physiol. Plant. 2008. V. 132. P. 452-466. https://doi.org/10.1111/j.1399-3054.2007.01029.x
  6. 6. Wang C., Wen D., Sun A., Han X., Zhang J., Wang Z., Yin Y. // J. Cereal Sci. 2014. V. 60. P. 635-659. http://dx.doi.org/10.1016/j.jcs.2014.05.004
  7. 7. Rahman M.A., Woo J.H., Song Y., Lee S.H., Hasan M.M., Azad M.A.K., Lee K.W. // Life. 2022. V. 12. 1426. https://doi.org/10.3390/life12091426
  8. 8. Mishra P., Bhoomika K., Dubey R.S. // Protoplasma. 2013. V. 250. P. 3-19. https://doi.org/10.1007/s00709-011-0365-3
  9. 9. Liu Z., Qiao D., Liu Z., Wang Z., Sun L., Li X. // Peer J. 2023. V. 11. e15177. http://doi.org/10.7717/peerj.15177
  10. 10. Hu X., Liu R., Li Y., Wang W., Tai F., Xue R., Li C. // Plant Growth Regul. 2010. V. 60. P. 225-235. https://doi.org/10.1007/s10725-009-9436-2
  11. 11. Юрина Н.П. // Молекулярная биология. 2023. Т. 57. C. 949-964. https://doi.org/10.31857/S00М26898423060228
  12. 12. Masand S., Yadav S.K. // Mol. Biol. Rep. 2016. V. 43. P.53-64. https://doi.org/10.1007/s11033-015-3938-y
  13. 13. Cho E.K., Hong C.B. // Plant Сell Reports. 2006. V. 25. P. 349-358. https://doi.org/10.1007/s00299-005-0093-2
  14. 14. Song A., Zhu X., Chen F., Gao H., Jiang J., Chen S. // Int. J. Mol. Sci. 2014. V. 15. P. 5063-5078. https://doi.org/10.3390/ijms15035063
  15. 15. Augustine S.M., Cherian A.V., Syamaladevi D.P., Subramonian N. // Plant Cell Physiol. 2015. V. 56. P. 2368-2380. https://doi.org/10.1093/pcp/pcv142
  16. 16. Pulido P., Llamas E., Rodriguez-Concepcion M. // Plant Signaling & Behavior. 2017. V. 12. e1290039. https://doi.org/10.1080/15592324.2017.1290039
  17. 17. Devarajan A.K., Muthukrishanan G., Truu J., Truu M., Ostonen I., Kizhaeral S.S. et al. // Plants. 2021. V. 10. 387. https://doi.org/10.3390/plants10020387
  18. 18. Mokhtar M., Bouamar S., Di Lorenzo A., Temporini C., Daglia M., Riazi A. // Molecules. 2021. V. 26. 3623. https://doi.org/10.3390/molecules26123623
  19. 19. Vinayashree S., Vasu P. // Food Chem. 2021. V. 340. 128177. https://doi.org/10.1016/j.foodchem.2020.128177
  20. 20. Круг Г. Овощеводство.Пер. с немецкого. М.: Колос, 2000. 572 с.
  21. 21. Bradford M.M. // Anal. Biochem. 1976. V. 72. P. 248- 254. https://doi.org/10.1006/abio.1976.9999
  22. 22. Chankova S., Mitrovska Z., Miteva D., Oleskina Y.P., Yurina N.P. // Gene. 2013. V. 516. P. 184-189. https://doi.org/10.1016/j.gene.2012.11.052
  23. 23. Gill S.S., Tuteja N. // Plant Physiol. Biochem. 2010. V. 48. P. 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016
  24. 24. Simova-Stoilova L., Vaseva I., Grigorova B., Demirevska. K., Feller U. // Plant Physiol. Biochem. 2010. V. 48. P. 200-206. https://doi.org/10.1016/j.plaphy.2009.11.003
  25. 25. Sharma P., Dubey R.S. // J. Plant Physiol. 2005. V. 162. P. 854-864. https://doi.org/10.1016/j.jplph.2004.09.011
  26. 26. Chen S., Liu A., Zhang S., Li C., Chang R., Liu D. // Plant Physiol. Biochem. 2013. V. 73. P. 245-253. https://doi.org/10.1016/j.plaphy.2013.10.002
  27. 27. Driedonks N., Xu J., Peters J.L., Park S., Rieu I. // Front. Plant Sci. 2015. V. 6. 999. https://doi.org/10.1134/S000629791510005310.3389/fpls.2015.00999
  28. 28. Fortunato S., Lasorella C., Dipierro N., Vita F., de Pinto M.C. // Antioxidants. 2023. V. 12. 605. https://doi.org/10.3390/antiox12030605
  29. 29. Andrási N., Pettkó-Szandtner A., Szabados L. // J. Exp. Botany. 2021. V. 72. P. 1558-1575. https://doi.org/10.1093/jxb/eraa576
  30. 30. Zhang L., Zhao H.K., Dong Q.L., Zhang Y.Y., Wang Y.M., Li H.Y. et al. // Front. Plant Sci. 2015. V. 6. 773. https://doi.org/10.3389/fpls.2015.00773
  31. 31. Singh R.K., Jaishankar J., Muthamilarasan M., Shweta S., Dangi A., Prasad M. // Sci. Rep. 2016. V. 6. 32641. https://doi.org/10.1038/srep32641
  32. 32. Kim T., Samraj S., Jiménez J., Gómez C., Liu T., Begcy K. // BMC Plant Biology. 2021. V. 21. P. 1-20. https://doi.org/10.1186/s12870-021-02959-x
  33. 33. Liu J., Xu L., Shang J., Hu X., Yu H., Wu H., Lv W., Zhao Y. // Genet. Mol. Biol. 2021. V. 44. e20210035. https://doi.org/10.1590/1678-4685-GMB-2021-0035
  34. 34. Davoudi M., Chen J., Lou Q. // Int. J. Mol. Sci. 2022. V. 23. 1918. https://doi.org/10.3390/ijms23031918
  35. 35. Aina O., Bakare O., Fadaka A.O., Keyster M., Klein A. // Planta. 2024. V. 259. 60. http://doi.org/10.1007/s00425-024-04333-1
  36. 36. Dumanović J., Nepovimova E., Natić M., Kuča K., & Jaćević V. // Front. Рlant Sci. 2021. V. 11. 552969. https://doi.org/10.3389/fpls.2020.552969
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library