RAS BiologyПрикладная биохимия и микробиология Applied Biochemistry and Microbiology

  • ISSN (Print) 0555-1099
  • ISSN (Online) 3034-574X

Effect of the Mineral Composition of Sulfide Raw Materials on Bioleaching of Sulfide Minerals

PII
S3034574XS0555109925020087-1
DOI
10.7868/S3034574X25020087
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 2
Pages
185-193
Abstract
Bioleaching of nickel-copper sulfide ore, 2 sulfide copper-nickel concentrates, and copper-zinc concentrate was studied. It was shown that specific rates of nickel leaching were similar in experiments with all studied raw materials. It was 59.3, 58.7, and 54.4 mg/(g·d) in the case of the ore, concentrate 1, and concentrate 2, respectively. Specific rate of zinc leaching from copper-zinc concentrate was 248.6 mg/(g·d). Copper extraction level reached 98.5%, while its content decreased from 7.4% (in the concentrate) to 0.21% (leaching residue). Specific copper leaching rate (7.3-14.8 mg/(g·d)) was lower than those of nickel and zinc. In contrast to nickel and zinc, copper content in bioleaching residue increased in comparison to the concentrate: in the case of copper-nickel concentrates it increased from 15.1 to 17.8% (concentrate 1) and from 19.1 to 19.7% (concentrate 2), while in the case of copper-zinc concentrate, it increased from 10.1 to 16.1%. Thus, bioleaching of all studied concentrates made it possible to obtain copper concentrates with comparatively high copper content (16-19%), which can be commercial products for pyrometallurgy. A comparative analysis of the leaching processes of the selected raw materials will allow to assess the prospects of using the approach under study for processing concentrates and ores of various compositions and with different ratios of non-ferrous metal minerals.
Keywords
сульфидный концентрат халькопирит сфалерит пентландит виоларит биогидрометаллургия выщелачивание
Date of publication
12.11.2024
Year of publication
2024
Number of purchasers
0
Views
28

References

  1. 1. Brierley C., Brierley J. // Appl. Microbiol. Biotechnol. 2013. V. 97. № 17. P. 7543-7552. https://doi.org/10.1007/s00253-013-5095-3
  2. 2. Batty J., Rorke G. // Hydrometallurgy. 2006. V. 83. № 1-4. P. 83-89. https://doi.org/10.1016/j.hydromet.2006.03.049
  3. 3. Gentina J.C., Acevedo F. // Minerals. 2016. V. 6. № 1. 23. https://doi.org/10.3390/min6010023
  4. 4. Johnson D. // Minerals. 2018. V. 8. № 8. 343. https://doi.org/10.3390/min8080343
  5. 5. Fomchenko N., Muravyov M. // Minerals. 2020. V. 10. № 12. 1097. https://doi.org/10.3390/min10121097
  6. 6. Kaksonen A.H., Lakaniemi A.-M., Tuovinen O.H. // J. Cleaner Prod. 2020. V. 264. 121586. https://doi.org/10.1016/j.jclepro.2020.121586
  7. 7. Kaksonen A.H., Mudunuru B.M., Hackl R. // Hydrometallurgy. 2014. V. 142. P. 70-83. https://doi.org/10.1016/j.hydromet.2013.11.008
  8. 8. Mahmoud A., Céza P., Hoadley A.F.A., Contamin F., D’Hugues P. // Int. Biodeterior. Biodegrad. 2017. V. 119. P. 118-146. https://doi.org/10.1016/j.ibiod.2016.09.015
  9. 9. Fomchenko N., Muravyov M. // Hydrometallurgy. 2019. V. 185. P. 82-87. https://doi.org/10.1016/j.hydromet.2019.02.002
  10. 10. Esmailbagi M.R., Schaffie M., Kamyabi A., Ranjbar M. // Hydrometallurgy. 2018. V. 180. P. 139-143. https://doi.org/10.1016/j.hydromet.2018.07.020
  11. 11. Fomchenko N., Muravyov M. // Appl. Biochem. Microbiol. 2017. V. 53. № 6. P. 715-718. https://doi.org/10.1134/S0003683817060059
  12. 12. Fomchenko N., Uvarova T., Muravyov M. // Miner. Eng. 2019. V. 138. P. 1-6. https://doi.org/10.1016/j.mineng.2019.04.026
  13. 13. Watling H.R. // Hydrometallurgy. 2008. V. 91. № 1-4. P. 70-88. https://doi.org/10.1016/j.hydromet.2007.11.012
  14. 14. Sun J.Z., Wen J.K., Wu B., Chen B.W. // Minerals. 2020. V. 10. № 3. 289. https://doi.org/10.3390/min10030289
  15. 15. Muravyov M.I., Fomchenko N.V. // Appl. Biochem. Microbiol. 2019. V. 55. № 4. P. 414-419. https://doi.org/10.1134/S0003683819040124
  16. 16. Muravyov M., Panyushkina A., Bulaev A., Fomchenko N. // Minerals Engineering. 2021. V. 170. 107040. https://doi.org/10.1016/j.mineng.2021.107040
  17. 17. Muravyov M., Panyushkina A., Fomchenko N. // Journal of Environmental Management. 2022. V. 318. 115587. https://doi.org/10.1016/j.jenvman.2022.115587
  18. 18. Muravyov M., Panyushkina A. // Hydrometallurgy. 2023. V. 219. 106067. https://doi.org/10.1016/j.hydromet.2023.106067
  19. 19. Muravyov M., Panyushkina A., Fomchenko N. // Minerals Engineering. 2022. V. 182. 107586. https://doi.org/10.1016/j.mineng.2022.107586
  20. 20. Муравьёв М.И., Панюшкина А.Е., Меламуд В.С., Булаев А.Г., Фомченко Н.В. // Прикл. биохимия и микробиология. 2021. Т. 57. № 4. С. 380-387. https://doi.org/10.31857/S0555109921040115
  21. 21. Фомченко Н.В., Панюшкина А.Е., Меламуд В.С., Муравьёв М.И. // Прикл. биохимия и микробиология. 2022. Т. 58. № 4. С. 382-387. https://doi.org/10.31857/S0555109922040043
  22. 22. Fu K., Ning Y., Chen S., Wang Z. // Mineral Processing and Extractive Metallurgy (Trans. Inst. Min. Metall. C). 2016. V. 125. № 1. P. 1-4. https://doi.org/10.1179/1743285515Y.0000000013
  23. 23. Zhao H., Wang J., Yang C., Hu M., Gan X., Tao L. et al. // Hydrometallurgy. 2015. V. 151. P. 141-150. https://doi.org/10.1016/j.hydromet.2014.11.009
  24. 24. Kondrat’eva T.F., Pivovarova T.A., Tsaplina I.A., Fomchenko N.V., Zhuravleva A.E., Murav’ev M.I. et al. // Microbiol. 2012. V. 81. № 1. V. 1-24. https://doi.org/10.1134/S0026261712010080
  25. 25. Panyushkina A.E., Tsaplina I.A., Kondrat’eva T.F., Belyi A.V., Bulaev A.G. // Microbiol. 2018. V. 87. № 3. P. 326-338. https://doi.org/10.1134/S0026261718030086
  26. 26. Watling H.R., Collinson D.M., Fjastad S., Kaksonen A.H., Li J., Morris C., Perrot F.A., Rea S.M., Shiers D.W. // Miner. Eng. 2014. V. 58. P. 90-99. https://doi.org/10.1016/j.mineng.2014.01.022
  27. 27. Mason L.J., Rice N.M. // Miner. Eng. 2002. V. 15. № 11. P. 795-808. https://doi.org/10.1016/S0892-6875 (02)00118-8
  28. 28. Sun J., Wen J., Wu B., Chen B. // Minerals. 2020. V. 10. № 3. 289. https://doi.org/10.3390/min10030289
  29. 29. Watling H.R. // Hydrometallurgy. 2006. V. 84. № 1-2. P. 81-108. https://doi.org/10.1016/j.hydromet.2006.05.001
  30. 30. Hedrich S., Joulian C., Graupner T., Schippers A., Guezennec A.G. // Hydrometallurgy. 2018. V. 179. P. 125-131. https://doi.org/10.1016/j.hydromet.2018.05.018
  31. 31. Silverman M.P., Lundgren D.G. // J. Bacteriol. 1959. V. 77. № 5. P. 642-647. https://doi.org/10.1128/jb.77.5.642-647.1959
  32. 32. Davis D.G., Jacobsen W.R. // Anal. Chem. 1960. V. 32. № 2. P. 215-217. https://doi.org/10.1021/ac60158a024
  33. 33. Souza A.D., Pina P.S., Leao V.A., Silva C.A., Siqueira P.F. // Hydrometallurgy. 2007. V. 89. № 1-2. P. 72-81. https://doi.org/10.1016/j.hydromet.2007.05.008
  34. 34. Wang Y., Chen X., Zhou H. // Biores. Technol. 2018. V. 265. P. 581-585. https://doi.org/10.1016/j.biortech.2018.07.017
  35. 35. Riekkola-Vanhanen M., Heimala S. // Proceedings of an International Biohydrometallurgy Symposium. 1993. V. 1. P. 561-570.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library