RAS BiologyПрикладная биохимия и микробиология Applied Biochemistry and Microbiology

  • ISSN (Print) 0555-1099
  • ISSN (Online) 3034-574X

Determination of Bacterial Sensitivity to a Bacteriophage by Using a Compact Acoustic Analyzer

PII
S3034574XS0555109925020103-1
DOI
10.7868/S3034574X25020103
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 2
Pages
207-216
Abstract
The work demonstrates for the first time the potential of a compact acoustic sensor system for assessing the impact of bacteriophages on microbial cells and assessing their bacteriophage sensitivity. It was found that using the developed system one can evaluate the activity of bacteriophages against microbial cells within 5 min without taking into account the time of cultivating microbial cells for analysis. The results obtained are promising for the further development of the acoustic sensory system in the phage therapy.
Keywords
бактериофаг микробная клетка фаготерапия акустический компактный анализатор
Date of publication
05.07.2024
Year of publication
2024
Number of purchasers
0
Views
28

References

  1. 1. Sulakvelidze A., Alavidze Z., Morris J.G. Jr. // Antimicrob. Agents Chemother. 2001. V. 45. № 3. P. 649-659. https://doi.org/10.1128/AAC.45.3.649-659.2001
  2. 2. Kifelew L.G., Warner M.S., Morales S., Vaughan L., Woodman R., Fitridge R. et al. // BMC Microbiol. 2020. V. 20. № 1. P. 204. https://doi.org/10.1186/s12866-020-01891-8
  3. 3. Macdonald K.E., Stacey H.J., Harkin G., Hall L.M.L, Young M.J., Jones J.D. // PLoS ONE. 2020. V. 15. e0243947. https://doi.org/10.1371/journal.pone.0243947
  4. 4. Chanishvili N. // Adv. Virus Res. 2012. V. 83. P. 3-40. https://doi.org/10.1016/B978-0-12-394438-2.00001-3
  5. 5. Horcajada J.P., Montero M., Oliver A., Sorlí L., Luque S., Gómez-Zorrilla S. et al. // Clin. Microbiol. Rev. 2019. V. 32. № 4. e00031-19. https://doi.org/10.1128/CMR.00031-19
  6. 6. Mandal S.M., Roy A., Ghosh A.K., Hazra T.K., Basak A., Franco O.L. // Front. Pharmacol. 2014. V. 5. P. 105. https://doi.org/10.3389/fphar.2014.00105
  7. 7. Pirnay J.P., Ferry T., Resch G. // FEMS Microbiol. Rev. 2022. V. 46. № 1. https://doi.org/10.1093/femsre/fuab040
  8. 8. Botka T., Pantůček R., Mašlaňová I., Benešík M., Petráš P., Růžičková V. et al. // Sci. Rep. 2019. V. 9. P. 5475. https://doi.org/10.1038/s41598-019-41868-w
  9. 9. Taati Moghadam M., Amirmozafari N., Shariati A., Hallajzadeh M., Mirkalantari S., Khoshbayan A., Masjedian Jazi F. // Infect. Drug. Resist. 2020. V. 13. P. 45-61. https://doi.org/10.2147/IDR.S234353
  10. 10. Taati Moghadam M., Khoshbayan A., Chegini Z., Farahani I., Shariati A. // Drug. Des. Devel. Ther. 2020. V. 14. P. 1867-1883. https://doi.org/10.2147/DDDT.S251171
  11. 11. Huon J.F., Montassier E., Leroy A.G., Grégoire M., Vibet M.A., Caillon J. et al. // mSystems. 2020. V. 5. № 6. e00542-20. https://doi.org/10.1128/mSystems.00542-20
  12. 12. Shivaram K.B., Bhatt P., Verma M.S., Clase K., Simsek H. // Science of the Total Environment. 2023. V. 901. P. 165859. https://doi.org/10.1016/j.scitotenv.2023.165859
  13. 13. Wang Z., Zhao X. // J. Appl. Microbiol. 2022. V. 133. № 4. P. 2137-2147. https://doi.org/10.1111/jam.15555
  14. 14. Tang A.-Q., Yuan L., Chen C.-W., Zhang Y.-S., Yang Z.-Q. // Lwt. 2023. V. 182. P. 114774. https://doi.org/10.1016/j.lwt.2023.114774
  15. 15. Carmody C.M., Goddard J.M., Nugen S.R. // Bioconjugate Chemistry. 2021. V. 32. № 3. P. 466-481. https://doi.org/10.9931021/acs.bioconjchem.1c00018
  16. 16. Li T., Lu X.M., Zhang M.R., Hu K., Li Z. // Bioactive Materials. 2022. V. 11. P. 268-282. https://doi.org/10.1016/j.1130bioactmat.2021.09.029
  17. 17. Stone E., Campbell K., Grant I., McAulie O. // Viruses. 2019. V. 11. P. 567. https://doi.org/10.3390/v11060567
  18. 18. Alaoui Mdarhri H., Benmessaoud R., Yacoubi H., Seffar L., Guennouni Assimi H., Hamam M. et al. // Antibiotics (Basel). 2022. V. 11. № 12. P. 1826. https://doi.org/10.3390/antibiotics11121826
  19. 19. Soothill J.S. // Burns. 1994. V. 20. № 3. P. 209-211. https://doi.org/10.1016/0305-4179 (94)90184-8
  20. 20. Mendes J.J., Leandro C., Corte-Real S., Barbosa R., Cavaco-Silva P, Melo-Cristino J. et al. // Wound Repair Regen. 2013. V. 21. P. 595-603. https://doi.org/10.1111/wrr.12056
  21. 21. dos Santos Ferreira N., Hayashi Sant’ Anna F., Massena Reis V., Ambrosini A., Gazolla Volpiano C., Rothballer M. et al. // Int. J. Syst. Evol. Microbiol. 2020. V. 70. № 12. P. 6203-6212.22. https://doi.org/10.1099/ijsem.0.004517
  22. 22. Guliy O.I., Zaitsev B.D., Borodina I.A., Shikhabudinov A.P., Teplykh A.A. // Appl. Biochem. Microbiol. 2017. V. 53. № 4. P. 464-469. https://doi.org/10.1134/S0003683817040068
  23. 23. Sambrook J., Fritsch E.F., Maniatis T. Molecular Сloning: a Laboratory Manual. 2 Ed. N.Y.: Cold Spring. Maven Lab. Press, 1989. 1626 p.
  24. 24. Hoogenboom H.R., Griffits A.D., Johnson K.S., Chiswell D.J., Hundson P., Winter G. // Nucleic Acids Res. 1991. V. 19. P. 4133-4137. https://doi.org/10.1093/nar/19.15.4133.
  25. 25. Click E.M., Webster R.E. // J. Bacteriol. 1997. V. 179. №. 20. P. 6464-6471. https://doi.org/10.1128/jb.179.20.6464-6471.1997
  26. 26. Click E.M., Webster R.E. // J. Bacteriol. 1998. V. 180. №. 7. P. 1723-1728. https://doi.org/10.1128/JB.180.7.1723-1728.1998
  27. 27. Riechmann L., Holliger P. // Cell. 1997. V. 90. № 2. P. 351-360. https://doi.org/10.1016/s0092-8674 (00)80342-6.
  28. 28. Deng L.W., Malik P., Perham R.N. // Virology. 1999. V. 253. P. 271-277. https://doi.org/10.1006/viro.1998.9509
  29. 29. Branston S.D., Stanley E.C., Ward J.M., Keshavarz-Moore E. // Biotechnol. Bioproc. Eng. 2013. V. 18. P. 560-566. https://doi.org/10.1007/s12257-012-0776-9
  30. 30. Moghimian P., Srot V., Pichon B.P., Facey S.J., van Aken P.A. // JBNB. 2016. V. 7. № 2. P. 72-77. https://doi.org/10.4236/jbnb.2016.72009
  31. 31. Salivar W.O., Tzagoloff H., Pratt D. // Virology. 1964. V. 24. P. 359-371. https://doi.org/10.1016/0042-6822 (64)90173-4
  32. 32. Seo H., Cho S., Vo T.T.B., Lee A., Cho S., Kang S. et al. // Microbiol Spectr. 2023. V. 11. e01446-23. https://doi.org/10.1128/spectrum.01446-23
  33. 33. Smith G.P., Scott J.K. // Methods Enzymol. 1993. V. 217. P. 228-257. https://doi.org/10.1016/0076-6879 (93)17065-d
  34. 34. Zaitsev B.D., Borodina I.A., Teplykh A.A. // Ultrasonics. 2022. V. 126. P. 106814. https://doi.org/10.1016/j.ultras.2022.106814
  35. 35. Rakhuba, D.V., Kolomiets, E.I., Dey, E.S., Novik G.I. // Pol J Microbiol. 2010. V. 59. № 3. P. 145-155.
  36. 36. Fraser J.S., Maxwell K.L., Davidson A.R. // J. Mol. Biol. 2006. V. 359. P. 496-507. https://doi.org/10.1016/j.jmb.2006.03.043
  37. 37. Fraser J.S., Maxwell K.L., Davidson A.R. // Curr. Opin. Microbiol. 2007. V. 10. P. 382-387. https://doi.org/10.1016/j.mib.2007.05.018
  38. 38. Lukose J., Barik A.K., Mithun N., Sanoop Pavithran M., George S.D., Murukeshan V.M., Chidangil S. // Biophys Rev. 2023. V. 15. № 2. P. 199-221. https://doi.org/10.1007/s12551-023-01059-4
  39. 39. Defilippis V.R., Villarreal L.P. // Introduction to the Evolutionary Ecology of Viruses. Viral Ecology. 2000. Р. 125-208. https://doi.org/10.1016/B978-012362675-2/50005-7
  40. 40. Strathdee S.A., Hatfull G.F., Mutalik V.K., Schooley R.T. // Cell. 2023. V. 186. № 1. P. 17-31. https://doi.org/10.1016/j.cell.2022.11.017
  41. 41. Grabowski Ł., Łepek K., Stasiłojć M., Kosznik-Kwaśnicka K., Zdrojewska K., Maciąg-Dorszyńska M. et al. // Microbiol Res. 2021. V. 248. P. 126746. https://doi.org/10.1016/j.micres.2021.126741.
  42. 42. Suh G.A., Patel R. // Clin. Microbiol. Infect. 2023. V. 29. № 6. P. 710-713. https://doi.org/10.1016/j.cmi.2023.02.006.
  43. 43. Daubie V., Chalhoub H., Blasdel B., Dahma H., Merabishvili M., Glonti T. et al. // Front. Cell. Infect. Microbiol. 2022. V. 12. Р. 1000721. https://doi.org/10.3389/fcimb.2022.1000721
  44. 44. Patpatia S., Schaedig E., Dirks A., Paasonen L., Skurnik M., Kiljunen S. // Front. Cell. Infect. Microbiol. 2022. V. 12. Р. 1032052. https://doi.org/10.3389/fcimb.2022.1032052
  45. 45. Perlemoine P., Marcoux P.R., Picard E., Hadji E., Zelsmann M., Mugnier G. et al. // PLoS ONE 2021. V. 16. № 3. e0248917. https://doi.org/10.1371/journal.pone.0248917
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library