- PII
- S3034574XS0555109925020103-1
- DOI
- 10.7868/S3034574X25020103
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 61 / Issue number 2
- Pages
- 207-216
- Abstract
- The work demonstrates for the first time the potential of a compact acoustic sensor system for assessing the impact of bacteriophages on microbial cells and assessing their bacteriophage sensitivity. It was found that using the developed system one can evaluate the activity of bacteriophages against microbial cells within 5 min without taking into account the time of cultivating microbial cells for analysis. The results obtained are promising for the further development of the acoustic sensory system in the phage therapy.
- Keywords
- бактериофаг микробная клетка фаготерапия акустический компактный анализатор
- Date of publication
- 05.07.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 28
References
- 1. Sulakvelidze A., Alavidze Z., Morris J.G. Jr. // Antimicrob. Agents Chemother. 2001. V. 45. № 3. P. 649-659. https://doi.org/10.1128/AAC.45.3.649-659.2001
- 2. Kifelew L.G., Warner M.S., Morales S., Vaughan L., Woodman R., Fitridge R. et al. // BMC Microbiol. 2020. V. 20. № 1. P. 204. https://doi.org/10.1186/s12866-020-01891-8
- 3. Macdonald K.E., Stacey H.J., Harkin G., Hall L.M.L, Young M.J., Jones J.D. // PLoS ONE. 2020. V. 15. e0243947. https://doi.org/10.1371/journal.pone.0243947
- 4. Chanishvili N. // Adv. Virus Res. 2012. V. 83. P. 3-40. https://doi.org/10.1016/B978-0-12-394438-2.00001-3
- 5. Horcajada J.P., Montero M., Oliver A., Sorlí L., Luque S., Gómez-Zorrilla S. et al. // Clin. Microbiol. Rev. 2019. V. 32. № 4. e00031-19. https://doi.org/10.1128/CMR.00031-19
- 6. Mandal S.M., Roy A., Ghosh A.K., Hazra T.K., Basak A., Franco O.L. // Front. Pharmacol. 2014. V. 5. P. 105. https://doi.org/10.3389/fphar.2014.00105
- 7. Pirnay J.P., Ferry T., Resch G. // FEMS Microbiol. Rev. 2022. V. 46. № 1. https://doi.org/10.1093/femsre/fuab040
- 8. Botka T., Pantůček R., Mašlaňová I., Benešík M., Petráš P., Růžičková V. et al. // Sci. Rep. 2019. V. 9. P. 5475. https://doi.org/10.1038/s41598-019-41868-w
- 9. Taati Moghadam M., Amirmozafari N., Shariati A., Hallajzadeh M., Mirkalantari S., Khoshbayan A., Masjedian Jazi F. // Infect. Drug. Resist. 2020. V. 13. P. 45-61. https://doi.org/10.2147/IDR.S234353
- 10. Taati Moghadam M., Khoshbayan A., Chegini Z., Farahani I., Shariati A. // Drug. Des. Devel. Ther. 2020. V. 14. P. 1867-1883. https://doi.org/10.2147/DDDT.S251171
- 11. Huon J.F., Montassier E., Leroy A.G., Grégoire M., Vibet M.A., Caillon J. et al. // mSystems. 2020. V. 5. № 6. e00542-20. https://doi.org/10.1128/mSystems.00542-20
- 12. Shivaram K.B., Bhatt P., Verma M.S., Clase K., Simsek H. // Science of the Total Environment. 2023. V. 901. P. 165859. https://doi.org/10.1016/j.scitotenv.2023.165859
- 13. Wang Z., Zhao X. // J. Appl. Microbiol. 2022. V. 133. № 4. P. 2137-2147. https://doi.org/10.1111/jam.15555
- 14. Tang A.-Q., Yuan L., Chen C.-W., Zhang Y.-S., Yang Z.-Q. // Lwt. 2023. V. 182. P. 114774. https://doi.org/10.1016/j.lwt.2023.114774
- 15. Carmody C.M., Goddard J.M., Nugen S.R. // Bioconjugate Chemistry. 2021. V. 32. № 3. P. 466-481. https://doi.org/10.9931021/acs.bioconjchem.1c00018
- 16. Li T., Lu X.M., Zhang M.R., Hu K., Li Z. // Bioactive Materials. 2022. V. 11. P. 268-282. https://doi.org/10.1016/j.1130bioactmat.2021.09.029
- 17. Stone E., Campbell K., Grant I., McAulie O. // Viruses. 2019. V. 11. P. 567. https://doi.org/10.3390/v11060567
- 18. Alaoui Mdarhri H., Benmessaoud R., Yacoubi H., Seffar L., Guennouni Assimi H., Hamam M. et al. // Antibiotics (Basel). 2022. V. 11. № 12. P. 1826. https://doi.org/10.3390/antibiotics11121826
- 19. Soothill J.S. // Burns. 1994. V. 20. № 3. P. 209-211. https://doi.org/10.1016/0305-4179 (94)90184-8
- 20. Mendes J.J., Leandro C., Corte-Real S., Barbosa R., Cavaco-Silva P, Melo-Cristino J. et al. // Wound Repair Regen. 2013. V. 21. P. 595-603. https://doi.org/10.1111/wrr.12056
- 21. dos Santos Ferreira N., Hayashi Sant’ Anna F., Massena Reis V., Ambrosini A., Gazolla Volpiano C., Rothballer M. et al. // Int. J. Syst. Evol. Microbiol. 2020. V. 70. № 12. P. 6203-6212.22. https://doi.org/10.1099/ijsem.0.004517
- 22. Guliy O.I., Zaitsev B.D., Borodina I.A., Shikhabudinov A.P., Teplykh A.A. // Appl. Biochem. Microbiol. 2017. V. 53. № 4. P. 464-469. https://doi.org/10.1134/S0003683817040068
- 23. Sambrook J., Fritsch E.F., Maniatis T. Molecular Сloning: a Laboratory Manual. 2 Ed. N.Y.: Cold Spring. Maven Lab. Press, 1989. 1626 p.
- 24. Hoogenboom H.R., Griffits A.D., Johnson K.S., Chiswell D.J., Hundson P., Winter G. // Nucleic Acids Res. 1991. V. 19. P. 4133-4137. https://doi.org/10.1093/nar/19.15.4133.
- 25. Click E.M., Webster R.E. // J. Bacteriol. 1997. V. 179. №. 20. P. 6464-6471. https://doi.org/10.1128/jb.179.20.6464-6471.1997
- 26. Click E.M., Webster R.E. // J. Bacteriol. 1998. V. 180. №. 7. P. 1723-1728. https://doi.org/10.1128/JB.180.7.1723-1728.1998
- 27. Riechmann L., Holliger P. // Cell. 1997. V. 90. № 2. P. 351-360. https://doi.org/10.1016/s0092-8674 (00)80342-6.
- 28. Deng L.W., Malik P., Perham R.N. // Virology. 1999. V. 253. P. 271-277. https://doi.org/10.1006/viro.1998.9509
- 29. Branston S.D., Stanley E.C., Ward J.M., Keshavarz-Moore E. // Biotechnol. Bioproc. Eng. 2013. V. 18. P. 560-566. https://doi.org/10.1007/s12257-012-0776-9
- 30. Moghimian P., Srot V., Pichon B.P., Facey S.J., van Aken P.A. // JBNB. 2016. V. 7. № 2. P. 72-77. https://doi.org/10.4236/jbnb.2016.72009
- 31. Salivar W.O., Tzagoloff H., Pratt D. // Virology. 1964. V. 24. P. 359-371. https://doi.org/10.1016/0042-6822 (64)90173-4
- 32. Seo H., Cho S., Vo T.T.B., Lee A., Cho S., Kang S. et al. // Microbiol Spectr. 2023. V. 11. e01446-23. https://doi.org/10.1128/spectrum.01446-23
- 33. Smith G.P., Scott J.K. // Methods Enzymol. 1993. V. 217. P. 228-257. https://doi.org/10.1016/0076-6879 (93)17065-d
- 34. Zaitsev B.D., Borodina I.A., Teplykh A.A. // Ultrasonics. 2022. V. 126. P. 106814. https://doi.org/10.1016/j.ultras.2022.106814
- 35. Rakhuba, D.V., Kolomiets, E.I., Dey, E.S., Novik G.I. // Pol J Microbiol. 2010. V. 59. № 3. P. 145-155.
- 36. Fraser J.S., Maxwell K.L., Davidson A.R. // J. Mol. Biol. 2006. V. 359. P. 496-507. https://doi.org/10.1016/j.jmb.2006.03.043
- 37. Fraser J.S., Maxwell K.L., Davidson A.R. // Curr. Opin. Microbiol. 2007. V. 10. P. 382-387. https://doi.org/10.1016/j.mib.2007.05.018
- 38. Lukose J., Barik A.K., Mithun N., Sanoop Pavithran M., George S.D., Murukeshan V.M., Chidangil S. // Biophys Rev. 2023. V. 15. № 2. P. 199-221. https://doi.org/10.1007/s12551-023-01059-4
- 39. Defilippis V.R., Villarreal L.P. // Introduction to the Evolutionary Ecology of Viruses. Viral Ecology. 2000. Р. 125-208. https://doi.org/10.1016/B978-012362675-2/50005-7
- 40. Strathdee S.A., Hatfull G.F., Mutalik V.K., Schooley R.T. // Cell. 2023. V. 186. № 1. P. 17-31. https://doi.org/10.1016/j.cell.2022.11.017
- 41. Grabowski Ł., Łepek K., Stasiłojć M., Kosznik-Kwaśnicka K., Zdrojewska K., Maciąg-Dorszyńska M. et al. // Microbiol Res. 2021. V. 248. P. 126746. https://doi.org/10.1016/j.micres.2021.126741.
- 42. Suh G.A., Patel R. // Clin. Microbiol. Infect. 2023. V. 29. № 6. P. 710-713. https://doi.org/10.1016/j.cmi.2023.02.006.
- 43. Daubie V., Chalhoub H., Blasdel B., Dahma H., Merabishvili M., Glonti T. et al. // Front. Cell. Infect. Microbiol. 2022. V. 12. Р. 1000721. https://doi.org/10.3389/fcimb.2022.1000721
- 44. Patpatia S., Schaedig E., Dirks A., Paasonen L., Skurnik M., Kiljunen S. // Front. Cell. Infect. Microbiol. 2022. V. 12. Р. 1032052. https://doi.org/10.3389/fcimb.2022.1032052
- 45. Perlemoine P., Marcoux P.R., Picard E., Hadji E., Zelsmann M., Mugnier G. et al. // PLoS ONE 2021. V. 16. № 3. e0248917. https://doi.org/10.1371/journal.pone.0248917