RAS BiologyПрикладная биохимия и микробиология Applied Biochemistry and Microbiology

  • ISSN (Print) 0555-1099
  • ISSN (Online) 3034-574X

The Effect of S-Nitrosoglutathione on the Amount and Activity of Erythroid Nuclear Factor Nrf2 in Human Hepatocellular Carcinoma Cells

PII
S3034574XS0555109925030021-1
DOI
10.7868/S3034574X25030021
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 3
Pages
236-248
Abstract
S-nitrosoglutathione (GSNO) is an endogenous donor of nitric oxide (NO), which, at the same time, can act both as a signaling molecule and a toxic agent, forming active forms of nitrogen. The purpose of this work was to study the mechanism of NO participation in the regulation of erythroid nuclear factor 2 (Nrf2) functioning, which is a redox-sensitive transcription factor. It was shown that when GSNO was exposed to human hepatocellular carcinoma cells (HepG2), the level of intracellular NO increased dose-dependently during incubation for 24 and 72 hours. The maximum increase of NO level at 100 mM concentration led to decrease of the amount of non-protein SH groups, to maximum increase of 3-nitrothyrosine and bityrosine levels, which contributed to the decline of cell viability. The NO donor — S-nitrosoglutation activated Nrf2 during exposure for 24 hours, most likely due to nitrosylation of Keap1 protein, and at 72 hours not only activated Nrf2, but also led to an increase in its amount. This process was carried out through NO-cGMP signaling pathway. Activation of Nrf2 is a key factor in protecting cells from the toxic effects of nitrosative stress products.
Keywords
нитрозоглутатион оксид азота эритроидный ядерный фактор Nrf2 3-нитрогирозин дигирозин клетки гепатоцеллюлярной карциномы человека HepG2
Date of publication
10.01.2025
Year of publication
2025
Number of purchasers
0
Views
32

References

  1. 1. Thomas D.D., Ridnour L.A., Isenberg J.S., Flores-Santana W., Switzer C.H., Donzelli S. et al. // Free Radic. Biol. Med. 2008. V. 45. № 1. P. 18–31. https://doi.org/10.1016/j.freeradbiomed.2008.03.020
  2. 2. Сучкова О.Н., Абаленцхина Ю.В., Костюковка Е.В., Щулькин А.В., Кочанова П.Д., Гаджиева Ф.Т. и др. // Вопросы биологической, медицинской и фармацевтической химии. 2024. Т. 9. № 27. С. 50–56. https://doi.org/10.29296/25877313-2024-09-07
  3. 3. Калинин Р.Е., Сучков И.А., Максаналов Н.Д., Короткова Н.В., Климентова Э.А., Поваров В.О. // Наука молодых (Eruditio Juvenium). 2021. Т. 9. № 3. С. 407–414. https://doi.org/10.23888/HMJ202193407-414
  4. 4. Abalentkhina Yu.V., Kosmachevskaya O.V., Topunov A.F. // Appl. Biochem. Microbiol. 2020. V. 56. № 6. P. 611–623. https://doi.org/10.1134/S0003683820060022
  5. 5. He F., Ru X., Wen T. // Int. J. Mol. Sci. 2020. V. 21. № 13. e4777. https://doi.org/10.3390/jims21134777
  6. 6. Турпаев К.Т. // Биохимия. 2013. Т. 78. № 2. С. 147–166
  7. 7. McMahon M., Lamont D.J., Beattie K.A., Hayes J.D. // Proc. Natl. Acad. Sci. USA. 2010. V. 107. № 44. P. 18838–18843. https://doi.org/10.1073/pnas.1007387107
  8. 8. Fourquet S., Guerois R., Biard D., Toledano M.B. // J. Biol. Chem. 2010. V. 285. № 11. C. 8463–8471. https://doi.org/10.1074/jbc. MI09.051714
  9. 9. Um H.-C., Jang J.-H., Kim D.-H., Lee C., Surh Y.-J. // Nitric Oxide. 2011. V. 25. № 2. P. 161–168. https://doi.org/10.1016/j.niox.2011.06.001
  10. 10. Cortese-Krott M.M., Pullmann D., Feelisch M. // Pharmacol. Res. 2016. V. 113. Pt. A. P. 490–499. https://doi.org/10.1016/j.phrs.2016.09.022
  11. 11. Sun Z., Zhang S., Chan J.Y., Zhang D.D. // Mol. Cell. Biol. 2007. V. 27. № 18. P. 6334–6349. https://doi.org/10.1128/MCB.00630-07
  12. 12. Kim S.-R., Seong K.-J., Kim W.-J., Jung J.-Y. // Int. J. Mol. Sci. 2022. V. 23. № 7. e4004. https://doi.org/10.3390/jims23074004
  13. 13. Gorska-Arcisz M., Popeda M., Braun M., Piasecka D., Nowak J.I., Kitowska K. et al. // Cell. Mol. Biol. Lett. 2024. V. 29. № 1. e71. https://doi.org/10.1186/s11658-024-00586-6
  14. 14. Menegon S., Columbano A., Giordano S. // Trends Mol. Med. 2016. V. 22. № 7. P. 578–593. https://doi.org/10.1016/j.molmed.2016.05.002
  15. 15. Gjorgveva Ackova D., Maksimova V., Smilkov K., Buttari B., Arese M., Saso L. // Pharmaceuticals. 2023. V. 16. № 6. e850. https://doi.org/10.3390/ph16060850
  16. 16. Kryszczuk M., Kowalczyk O. // Arch. Biochem. Biophys. 2022. V. 15. № 730. e109417. https://doi.org/10.1016/j.abb.2022.109417
  17. 17. Kalantari L., Ghorbabadi Z.R., Gholipour A., Elymayed H.M., Najafyan B., Amirlou P. et al. // Cell. Commun. Signal. 2023. V. 21. № 1. e318. https://doi.org/10.1186/s12964-023-01351-6
  18. 18. Song Y., Lu Q., Jiang D., Lan X. // Eur. J. Nucl. Med. Mol. Imaging. 2023. V. 50. № 3. P. 639–641. https://doi.org/10.1007/s00259-022-06043-w
  19. 19. Hwang T.L. // Br. J. Pharmacol. 1998. V. 125. № 6. P. 1158–1163.
  20. 20. Bollong M.J., Yun H., Sherwood L., Woods A.K., Laisson L.L., Schultz P.G. // ACS Chem. Biol. 2015. V. 10. № 10. P. 2193–2198. https://doi.org/10.1021/acschenbio.5b00448
  21. 21. Balcerczyk A., Soszynski M., Bartosz G. // Free Radic. Biol. Med. 2005. V. 39. № 3. P. 327–335. https://doi.org/10.1016/j.freeradbiomed.2005.03.017
  22. 22. Kumar P., Nagarajan A., Uchii P.D. // Cold Spring Harb. Protoe. 2018. V. 2018. № 6. https://doi.org/10.1101/pdb.prot095505
  23. 23. Kosmachevskaya O.V., Nasybullina E.I., Shumeev K.B., Novikova N.N., Topunov A.F. // Int. J. Mol. Sci. 2021. V. 22. № 24. e13649. https://doi.org/10.3390/jims222413649
  24. 24. Kojima S., Nakayama K., Ishida H. // J. Radiat. Res. 2024. V. 45. № 1. P. 33–39. https://doi.org/10.1269/jrr.45.33
  25. 25. Pravkin S.K., Yakusheva E.N., Uzbekova D.G. // Bull. Exp. Biol. Med. 2013. V. 156. № 2. P. 220–223. https://doi.org/10.1007/s10517-013-2315-x
  26. 26. Li W., Wang D., Lao K.U., Wang X. // ACS Biomater. Sci. Eng. 2023. V. 13. № 9. P. 1694–1705. https://doi.org/10.1021/acsbiometrials.2c01284
  27. 27. Broniowska K.A., Diers A.R., Hogg N. // Biochim. Biophys. Acta. 2013. V. 1830. № 5. P. 3173–3181. https://doi.org/10.1016/j.bbagen.2013.02.004
  28. 28. Ramachandran N., Root P., Jiang X-M., Hogg P.J., Mutus B. // Proc. Natl. Acad. Sci. USA. 2001. V. 98. № 17. P. 9539–9544.
  29. 29. Ferrer-Sueta G., Campolo N., Trujillo M., Bartesaghi S., Carballal S., Romero N. et al. // Chem. Rev. 2018. V. 118. № 3. P. 1338–1408.
  30. 30. Boer T.R., Palomino R.I., Mascharak P.K. // Med. One. 2019. V. 4. e190003. https://doi.org/10.20900/mo.20190003
  31. 31. Yu J., Zhao Y., Li B., Sun L., Huo H. // J. Biochem. Mol. Toxicol. 2012. V. 26. № 7. P. 264–269. https://doi.org/10.1002/jbt.21417
  32. 32. Абаленцхина Ю.В., Ерханна П.Д., Сенджушева А.А., Завьялова О.А., Щулькин А.В., Якушева Е.Н. // Российский медико-биологический вестник им. академика И.П. Павлова. 2022. Т. 30. № 3. С. 295–304. https://doi.org/10.17816/PAVLOVJ105574
  33. 33. Xu W., Liu L.Z., Loizidou M., Ahmed M., Charles I.G. // Cell. Res. 2002. V. 12. № 5–6. P. 311–320. https://doi.org/10.1038/sj.cr.7290133
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library