RAS BiologyПрикладная биохимия и микробиология Applied Biochemistry and Microbiology

  • ISSN (Print) 0555-1099
  • ISSN (Online) 3034-574X

Degradation of Dibutyl Phthalate by Halotolerant Strain Pseudarthrobacter sp. NKDBFgelt

PII
S3034574XS0555109925030064-1
DOI
10.7868/S3034574X25030064
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 3
Pages
283-293
Abstract
Dibutyl phthalate (DBP) is the di-n-butyl ester of -phthalic acid, widely used in the chemical industry as a plasticizer and is a common environmental pollutant. The ability of the halotolerant strain sp. NKDBFgelt (VKM Ac-3035) isolated from the rhizosphere soil of a salt mining area (Perm Krai, Russia) to use DBP as the sole source of carbon and energy was studied. The strain NKDBFgelt was capable of growth on DBP and ortho-phthalic acid (PA) at high salinity (up to 30 g/L and 50 g/L NaCl, respectively), as well as growth on DBP at a high concentration — up to 9 g/L. The strain degraded 75.2% DBP (initial concentration 200 mg/L DBP) by 72 h of cultivation in the absence of salt. With increased salinity of the medium (30–70 g/l NaCl), DBP degradation was recorded at a level of 66.95–27.8%. Analysis of the genome of the strain NKDBFgelt revealed clusters of genes involved in the degradation of DBP, PA, benzoic acid, as well as genes encoding enzymes of the main degradation pathways of aromatic compounds. The halotolerant strain sp. NKDBFgelt has a high degradative potential and is promising in the development of new biotechnologies for the restoration of soils contaminated with phthalic acid esters.
Keywords
Pseudarthrobacter дибутилфталат ortho-фталевая кислота разложение хлорид натрия полный геном
Date of publication
10.01.2025
Year of publication
2025
Number of purchasers
0
Views
21

References

  1. 1. Naveen K.V., Saravanakumar K., Zhang X., Sathiyaseelan A., Wang M.-H. // Environ. Res. 2022. V. 214. № 1. Article 113781. https://doi.org/10.1016/j.envres.2022.113781
  2. 2. Das M.T., Kumar S.S., Ghosh P., Shah G., Mahyan S.K., Bajar S. et al. // J. Hazard. Mater. 2021. V. 409. Article 124496. https://doi.org/10.1016/j.jhazmat.2020.124496
  3. 3. Liang D.-W., Zhang T., Fang H.H.P., He J. // Appl. Microbiol. Biotechnol. 2008. V. 80. № 2. P. 183–198. https://doi.org/10.1007/s00253-008-1548-5
  4. 4. Kong X., Jin D.C., Tai X., Yu H., Duan G.L., Yan X.L. et al. // Sci. Total. Environ. 2019. V. 667. P. 691–700. https://doi.org/10.1016/j.scitotenv.2019.02.385
  5. 5. Zornikova G., Jarosova A., Hrivna L. // Acta Univ. Agric. Et. Silvic. Mendel. Brun. 2011. V. 59. P. 233–238. https://doi.org/10.11118/actaun201159030233
  6. 6. Yue D.M., Yu X.Z., Li Y.H. // Int. J. Environ. Sci. Technol. 2015. V. 12. P. 3009–3016. https://doi.org/10.1007/s13762-014-0704-y
  7. 7. Gao M., Dong Y., Zhang Z., Song Z. // Environ. Pollut. 2020. V. 265. Article 114800. https://doi.org/10.1016/j.geoderma.2019.114126
  8. 8. Azaireh H., Castro P.M.L., Kidd P. // Organic Xenobiotics and Plants. / Eds. P. Schröder, C. D. Collins. Plant Ecophysiology. V. 8. Springer, 2011. P. 191–215. https://doi.org/10.1007/978-90-481-9852-8_9
  9. 9. Бачурин Б.А., Одинцов Т.А. Современные экологические проблемы Севера. Апатиты: Изд-во Кольского НЦ РАН, 2006. Т. 2. С. 7–9.
  10. 10. Корсакова Е.С., Шестковская Е.А., Хайрушка Е.А., Назаров А.В. // Российский иммунологический журнал. 2015. Т. 9 (18). № 2 (1). С. 591–593.
  11. 11. Cheng J.J., Liu Y.A., Wan Q., Yuan, L., Yu X.Y. // Sci. Total Environ. 2018. V. 640. P. 821–829. https://doi.org/10.1016/j.scitotenv.2018.05.336
  12. 12. Patil, N.K., Karegondar, T.B. // World J. Microbiol. Biotechnol. 2005. V. 21. № 8–9. P. 1493–1498. https://doi.org/10.1007/s11274-005-7369-0
  13. 13. Jin D., Kong X., Liu H., Wang X., Deng Y., Jia M., Yu X. // Int. J. Mol. Sci. 2016. V. 17. Article 1012. https://doi.org/10.3390/jims17071012
  14. 14. Lu Y., Tang F., Wang Y., Zhao J., Zeng X., Luo Q., Wang L. // J. Hazard. Mater. 2009. V. 168. № 2–3. P. 938–943. https://doi.org/10.1016/j.jhazmat.2009.02.126
  15. 15. Kumar V., Maina S.S. // Biotech. 2016. V. 6. № 200. https://doi.org/10.1007/s13205-016-0524-5
  16. 16. Liu T., Li J., Qiu L., Zhang F., Linhardt R.J., Zhong W. // Biotechnol. Bioeng. 2020. V. 117. P. 3712–3726. https://doi.org/10.1002/bit.27524
  17. 17. Nandi M., Paul T., Kanaujiya D.K., Baskaran D., Pakshirajan K., Pagachentiti G. // Water Supply. 2021. V. 21. № 5. P. 2084–2098. https://doi.org/10.2166/ws.2020.347
  18. 18. Wen Z.D., Gao D.-W., Wu W.-M. // Appl. Microbiol. Biotechnol. 2014. V. 98. № 10. P. 4683–4690. https://doi.org/10.1007/s00253-014-5568-z
  19. 19. Chen F., Chen Y., Chen C., Feng L., Dong Y., Chen J., et al. // Sci. Total Environ. 2021. V. 794. Article 148719. https://doi.org/10.1016/j.scitotenv.2021.148719
  20. 20. Shariati S., Ebenau-Jehle C., Pourbabaee A.A., Alikhani H.A., Rodriguez-Franco M., Agne M. et al. // Biodegradation. 2022. V. 33. P. 59–70. https://doi.org/10.1007/s10532-021-09966-7
  21. 21. Ren C., Wang Y., Wu Y., Zhao H.-P., Li L. // Biodegradation. 2024. V. 35(1). P. 87–99. https://doi.org/10.1007/s10532-023-10032-7
  22. 22. Eaton R.W. // J. Bacteriol. 2001. V. 183. № 12. P. 3689–3703. https://doi.org/10.1128/JB.183.12.3689-3703.2001
  23. 23. Jin D., Kong X., Cui B., Bai Z., Zhang H. // Int. J. Mol. Sci. 2013. V. 14. P. 24046–24054. https://doi.org/10.3390/jims141224046
  24. 24. Xu X.-R., Li H.-B., Gu J.-D. // Ecotoxicol. Environ. Saf. 2007. V. 68. P. 379–385. https://doi.org/10.1016/j.ecoenv.2006.11.012
  25. 25. Yang T., Ren L., Jia Y., Fan S., Wang J., Wang J. et al. // Int. J. Environ. Res. Public Health. 2018. V. 15. Article 964. https://doi.org/10.3390/jjerph15050964
  26. 26. Корсакова Е.С., Пьянкова А.А., Плотникова Е.Г. // Вестник Пермского университета. Серия Биология. 2023. № 4. С. 349–355. https://doi.org/10.17072/1994-9952-2023-4-349-355
  27. 27. Raymond R.L. // Developments in Industrial Microbiology. 1961. V. 2. № 1. P. 23–32.
  28. 28. Непрогулов А.И. Практикум по микробиологии. М.: Академия, 2005. 608 с.
  29. 29. Prijhelski A., Antipov D., Meleshko D., Lapidus, A., Korobeynikov A. // Current Protocols in Bioinformatics. 2020. V. 70. № 1. e102.
  30. 30. Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data; Babraham Bioinformatics, Babraham Institute: Cambridge, UK. 2010.
  31. 31. Bolger A.M., Lohse M., Usadel B. // Bioinformatics. 2014. V. 30. № 15. P. 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
  32. 32. Antipov D., Hartwick N., Shen M., Raiko M., Lapidus A., Pevzner P. // Bioinformatics. 2016. V. 32. № 22. P. 3380–3387. https://doi.org/10.1093/bioinformatics/btw493
  33. 33. Schwengers O., Jelonek L., Dieckmann M.A., Beyvers S., Blom J., Goesmann A. // Microbial Genomics. 2021. V. 7. № 11. Article 000685. https://doi.org/10.1099/mgen.0.000685.
  34. 34. Tatusov R., Galperin M., Natale D., Koonin E. // Nucleic Acids Res. 2000. V. 28. № 1. P. 6–33. https://doi.org/10.1093/nar/28.1.33
  35. 35. Kanehisa M., Goto S., Sato Y., Kawashima M., Furumichi M., Tanabe M. // Nucleic Acids Res. 2014. V. 42. № D1. P. D199–D205. https://doi.org/10.1093/nar/gkt1076
  36. 36. Li C., Liu C., Li R., Liu Y., Xie J., Li B. // Toxics. 2022. V. 10. Article 532. https://doi.org/10.3390/toxics10090532
  37. 37. Kaunep Z. Жизнь микробов в экстремальных условиях. М.: Мир, 1981. 365 с.
  38. 38. Latif A., Ahmad R., Ahmed J., Shah M. M., Ahmad R., Hassan A. // Sci. Hortic. 2023. V. 319. Article 112115. https://doi.org/10.1016/j.scienta.2023.112115
  39. 39. Issiju M., Songoro E.K., Onguso J., Aleka E.M., Ngumi VM. // Bacteria. 2022. V. 1. P. 191–206. https://doi.org/10.3390/bacteria1040015
  40. 40. Li J., Peng W., Yin X., Wang X., Liu Z., Liu Q. et al. // J. Hazard. Mater. 2024. V. 465. Article 133138. https://doi.org/10.1016/j.jhazmat.2023.133138
  41. 41. Ren L., Lin Z., Liu H., Hu H. // Appl. Microbiol. Biotechnol. 2018. V. 102. № 3. P. 1085–1096. https://doi.org/10.1007/s00253-017-8687-5
  42. 42. Iwata M., Inaoka T., Nishiyama T., Fujii, T. // J. Biosci. Bioeng. 2016. V. 122. № 2. P. 140–145. https://doi.org/10.1016/j.jbiosc.2016.01.008
  43. 43. Stanislauskienė R., Rudenkov M., Karvelis L. // Biologia. 2011. V. 57. № 3. P. 45–54.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library