- PII
- S3034574XS0555109925030074-1
- DOI
- 10.7868/S3034574X25030074
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 61 / Issue number 3
- Pages
- 294-302
- Abstract
- There are numerous publications indicating an increase in the expression level of heat shock proteins (HSP) in oncological diseases. Therefore, the development of methods for indicating HSP as a marker of oncological diseases is promising. In this work, phage antibodies specific to HSP of a mouse myeloma cell line were obtained. For the first time, using a compact acoustic sensor, the effect of the conductivity of the measurement medium on the registration of an analytical signal during the interaction of phage antibodies with HSP was studied. The possibility of registering a specific interaction "HSP-phage antibodies" in suspensions with a conductivity of 50-1180 μS/cm was experimentally established. Control experiments were conducted to assess of mass load on the sensor. The results obtained are promising for the development of acoustic sensor systems in the HSP indication.
- Keywords
- белки теплового шока акустическая сенсорная система фаговые антитела
- Date of publication
- 10.01.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 31
References
- 1. Poghossian A., Schoning M.J. // Electroanalysis 2014. V. 26. P. 1197–1213. https://doi.org/10.1002/elan.201400073
- 2. Marvi F., Jafari K. // IEEE Trans. Instrum. Meas. 2021. V. 70. P. 7501. https://doi.org/10.1109/TIM.2021.3052001
- 3. Durmuya N.G., Lin R.L., Kozberge M., Dermici D., Khademhosseini A., Demirci U. // Encyclopedia of Microfluidics and Nanofluidics. Living Reference Work. / Ed. D. Li. New York: Springer Science+Business Media, 2014. https://doi.org/10.1007/978-3-642-27758-0_10-2
- 4. Lange K., Rapp B.E., Rapp M. // Anal. Bioanal. Chem. 2008. V. 391. P. 1509–1519. https://doi.org/10.1007/s00216-008-1911-5
- 5. Guliy O.I., Zaitsev B.D., Borodina I.A. // Nanobioanalytical Approaches to Medical Diagnostics. / Eds P.K. Maurya, P. Chandra. Elsevier Ltd. Woodhead Publishing, 2022. Chapter 5. pp. 143–177. https://doi.org/10.1016/B978-0-323-85147-3.00004-9
- 6. Guliy O.I., Zaitsev B.D., Borodina I.A. // Sensors. 2023. V. 23. P. 6292. https://doi.org/10.3390/s23146292
- 7. Rocha-Gaso M.I., March-Iborra C., Montoya-Baides A., Arnau-Yives A. // Sensors. 2009. V. 9. P. 5740–5769. https://doi.org/10.3390/s90705740
- 8. Lee J., Choi Y.-S., Lee Y., Lee H.J., Lee J.N., Kim S.K. et al. // Anal. Chem. 2011. V. 83. P. 8629–8635. https://doi.org/10.1021/ac2020849
- 9. Han S.B., Lee S.S. // Micromachines 2024. V. 15. P. 249. https://doi.org/10.3390/mi15020249
- 10. Zhang J., Zhang X., Wei X., Xue Y., Wan H., Wang P. // Anal. Chim. Acta. 2021. V. 1164. P. 338321. https://doi.org/10.1016/j.aca.2021.338321
- 11. Mascini M., Del Carlo M., Compagnone D., Cozzani I., Tiscar P.G., Mpamhanga C.P. et al. // Anal. Lett. 2006. V. 39. № 8. P. 1627–1642. https://doi.org/10.1080/00032710600713529
- 12. Luengwilai K., Beckles D.M., Saliveit M.E. // Postharvest Biol. Technol. 2012. V. 63. № 1. P. 123–128. https://doi.org/10.1016/j.postharvbio.2011.06.017
- 13. Polenta G.A., Guidi S.M., Ambrosi V., Denoya G.I. // Curr. Res. Food Sci. 2020. V. 3. P. 329–338. https://doi.org/10.1016/j.crfs.2020.09.002
- 14. Kampinga H.H., Hageman J., Yos M.J., Kubota H., Tanguay R.M., Bruford E.A. et al. // Cell Stress Chaperones. 2009. V. 14. № 1. P. 105–111. https://doi.org/10.1007/s12192-008-0068-7
- 15. Maksimovich N.Y., Bon L.I. // J. Biomed. 2020. V. 16. № 2. P. 60–67. https://doi.org/10.33647/2074-5982-16-2-60-67
- 16. Shevtsov M., Balogi Z., Khachatryan W., Gao H., Vigh L., Mulino G. // Cells. 2020. V. 9. P. 1263. https://doi.org/10.3390/cells9051263
- 17. Rokutan K. // J. Gastroenterol. Hepatol. 2000. 15(Suppl):D. P. 12–19. https://doi.org/10.1046/j.1440-1746.2000.02144.x
- 18. Waters E.R. // J. Exp. Bot. 2013. V. 64. № 2. P. 391–403. https://doi.org/10.1093/jxb/ers355
- 19. Gully O.I., Staroverov S.A., and Dykman L.A. // Appl. Biochem. Microbiol. 2023. V. 59. № 4. P. 395–407. https://doi.org/10.1134/S0003683823040063
- 20. Bayer C., Liebhardt M.E., Schmid T.E., Trajkovic-Arsic M., Hubek, Specht H.M. et al. // Int. J. Radiat. Oncol. Biol. Phys. 2014. V. 88. № 3. P. 694–700. https://doi.org/10.1016/j.jirobp.2013.11.008
- 21. Qu B., Jia Y., Liu Y., Wang H., Ren G., Wang H. // Cell Stress and Chaperones. 2015. V. 20. P. 885–892. https://doi.org/10.1007/s12192-015-0618-8
- 22. Komarova E.Y., Suegov R.V., Nikotina A.D., Aksenov N.D., Garneva L.A., Shtam T.A. et al. // Sci. Rep. 2021. V. 11. P. 21314. https://doi.org/10.1038/s41598-021-00734-4
- 23. Staroverov S.A., Kozlov S.V., Brovko F.A., Fursova K.K., Shardin V.V., Fomin A.S. et al. // Biosens. Bioelectron.: X. 2022. V. 11. P. 100211. https://doi.org/10.1016/j.biosx.2022.100211
- 24. Dykman L.A., Staroverov S.A., Vyshchikov R.D., Fursova K.K., Brovko F.A., Soldatov D.A., Gully O.I. // Appl. Biochem d Microbiol. 2023. V. 59. № 4. P. 539–545. https://doi.org/10.1134/S0003683823040051
- 25. Gully O.I., Khanadeev V.A., Dykman L.A. // Front. Biosci. (Elite Ed.) 2024. V. 16. № 3. P. 24. https://doi.org/10.31083/j.fbe1603024
- 26. Petrenko V.A. // Viruses 2024. V. 16. P. 968. https://doi.org/10.3390/v16060968
- 27. Gully O.I., Zaitsev B.D., Borodina I.A., Staroverov S.A., Vyshchikov R.D., Fursova K.K. et al. // Microchem. J. 2024. V. 207. 111661. https://doi.org/10.1016/j.microc.2024.111661
- 28. Ulitin A.B., Kapralova M.V., Laman A.G., Shepelyakovskaya A.O., Bulgakova E.V., Fursova K.K. et al. // Dokl. Biochem. Biophys. 2005. V. 405. P. 437–440. https://doi.org/10.1007/s10628-005-0134-3
- 29. Calderwood S.K., Khaleque M.A., Sawyer D.B., Cloeca D.R. // Trends Biochem. Sci. 2006. V. 31. P. 164–172. https://doi: 10.1016/j.tibs.2006.01.006