RAS BiologyПрикладная биохимия и микробиология Applied Biochemistry and Microbiology

  • ISSN (Print) 0555-1099
  • ISSN (Online) 3034-574X

Indication of Heat Shock Proteins in Conducting Suspensions Using Phage Antibodies and an Acoustic Analyzer

PII
S3034574XS0555109925030074-1
DOI
10.7868/S3034574X25030074
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 3
Pages
294-302
Abstract
There are numerous publications indicating an increase in the expression level of heat shock proteins (HSP) in oncological diseases. Therefore, the development of methods for indicating HSP as a marker of oncological diseases is promising. In this work, phage antibodies specific to HSP of a mouse myeloma cell line were obtained. For the first time, using a compact acoustic sensor, the effect of the conductivity of the measurement medium on the registration of an analytical signal during the interaction of phage antibodies with HSP was studied. The possibility of registering a specific interaction "HSP-phage antibodies" in suspensions with a conductivity of 50-1180 μS/cm was experimentally established. Control experiments were conducted to assess of mass load on the sensor. The results obtained are promising for the development of acoustic sensor systems in the HSP indication.
Keywords
белки теплового шока акустическая сенсорная система фаговые антитела
Date of publication
10.01.2025
Year of publication
2025
Number of purchasers
0
Views
31

References

  1. 1. Poghossian A., Schoning M.J. // Electroanalysis 2014. V. 26. P. 1197–1213. https://doi.org/10.1002/elan.201400073
  2. 2. Marvi F., Jafari K. // IEEE Trans. Instrum. Meas. 2021. V. 70. P. 7501. https://doi.org/10.1109/TIM.2021.3052001
  3. 3. Durmuya N.G., Lin R.L., Kozberge M., Dermici D., Khademhosseini A., Demirci U. // Encyclopedia of Microfluidics and Nanofluidics. Living Reference Work. / Ed. D. Li. New York: Springer Science+Business Media, 2014. https://doi.org/10.1007/978-3-642-27758-0_10-2
  4. 4. Lange K., Rapp B.E., Rapp M. // Anal. Bioanal. Chem. 2008. V. 391. P. 1509–1519. https://doi.org/10.1007/s00216-008-1911-5
  5. 5. Guliy O.I., Zaitsev B.D., Borodina I.A. // Nanobioanalytical Approaches to Medical Diagnostics. / Eds P.K. Maurya, P. Chandra. Elsevier Ltd. Woodhead Publishing, 2022. Chapter 5. pp. 143–177. https://doi.org/10.1016/B978-0-323-85147-3.00004-9
  6. 6. Guliy O.I., Zaitsev B.D., Borodina I.A. // Sensors. 2023. V. 23. P. 6292. https://doi.org/10.3390/s23146292
  7. 7. Rocha-Gaso M.I., March-Iborra C., Montoya-Baides A., Arnau-Yives A. // Sensors. 2009. V. 9. P. 5740–5769. https://doi.org/10.3390/s90705740
  8. 8. Lee J., Choi Y.-S., Lee Y., Lee H.J., Lee J.N., Kim S.K. et al. // Anal. Chem. 2011. V. 83. P. 8629–8635. https://doi.org/10.1021/ac2020849
  9. 9. Han S.B., Lee S.S. // Micromachines 2024. V. 15. P. 249. https://doi.org/10.3390/mi15020249
  10. 10. Zhang J., Zhang X., Wei X., Xue Y., Wan H., Wang P. // Anal. Chim. Acta. 2021. V. 1164. P. 338321. https://doi.org/10.1016/j.aca.2021.338321
  11. 11. Mascini M., Del Carlo M., Compagnone D., Cozzani I., Tiscar P.G., Mpamhanga C.P. et al. // Anal. Lett. 2006. V. 39. № 8. P. 1627–1642. https://doi.org/10.1080/00032710600713529
  12. 12. Luengwilai K., Beckles D.M., Saliveit M.E. // Postharvest Biol. Technol. 2012. V. 63. № 1. P. 123–128. https://doi.org/10.1016/j.postharvbio.2011.06.017
  13. 13. Polenta G.A., Guidi S.M., Ambrosi V., Denoya G.I. // Curr. Res. Food Sci. 2020. V. 3. P. 329–338. https://doi.org/10.1016/j.crfs.2020.09.002
  14. 14. Kampinga H.H., Hageman J., Yos M.J., Kubota H., Tanguay R.M., Bruford E.A. et al. // Cell Stress Chaperones. 2009. V. 14. № 1. P. 105–111. https://doi.org/10.1007/s12192-008-0068-7
  15. 15. Maksimovich N.Y., Bon L.I. // J. Biomed. 2020. V. 16. № 2. P. 60–67. https://doi.org/10.33647/2074-5982-16-2-60-67
  16. 16. Shevtsov M., Balogi Z., Khachatryan W., Gao H., Vigh L., Mulino G. // Cells. 2020. V. 9. P. 1263. https://doi.org/10.3390/cells9051263
  17. 17. Rokutan K. // J. Gastroenterol. Hepatol. 2000. 15(Suppl):D. P. 12–19. https://doi.org/10.1046/j.1440-1746.2000.02144.x
  18. 18. Waters E.R. // J. Exp. Bot. 2013. V. 64. № 2. P. 391–403. https://doi.org/10.1093/jxb/ers355
  19. 19. Gully O.I., Staroverov S.A., and Dykman L.A. // Appl. Biochem. Microbiol. 2023. V. 59. № 4. P. 395–407. https://doi.org/10.1134/S0003683823040063
  20. 20. Bayer C., Liebhardt M.E., Schmid T.E., Trajkovic-Arsic M., Hubek, Specht H.M. et al. // Int. J. Radiat. Oncol. Biol. Phys. 2014. V. 88. № 3. P. 694–700. https://doi.org/10.1016/j.jirobp.2013.11.008
  21. 21. Qu B., Jia Y., Liu Y., Wang H., Ren G., Wang H. // Cell Stress and Chaperones. 2015. V. 20. P. 885–892. https://doi.org/10.1007/s12192-015-0618-8
  22. 22. Komarova E.Y., Suegov R.V., Nikotina A.D., Aksenov N.D., Garneva L.A., Shtam T.A. et al. // Sci. Rep. 2021. V. 11. P. 21314. https://doi.org/10.1038/s41598-021-00734-4
  23. 23. Staroverov S.A., Kozlov S.V., Brovko F.A., Fursova K.K., Shardin V.V., Fomin A.S. et al. // Biosens. Bioelectron.: X. 2022. V. 11. P. 100211. https://doi.org/10.1016/j.biosx.2022.100211
  24. 24. Dykman L.A., Staroverov S.A., Vyshchikov R.D., Fursova K.K., Brovko F.A., Soldatov D.A., Gully O.I. // Appl. Biochem d Microbiol. 2023. V. 59. № 4. P. 539–545. https://doi.org/10.1134/S0003683823040051
  25. 25. Gully O.I., Khanadeev V.A., Dykman L.A. // Front. Biosci. (Elite Ed.) 2024. V. 16. № 3. P. 24. https://doi.org/10.31083/j.fbe1603024
  26. 26. Petrenko V.A. // Viruses 2024. V. 16. P. 968. https://doi.org/10.3390/v16060968
  27. 27. Gully O.I., Zaitsev B.D., Borodina I.A., Staroverov S.A., Vyshchikov R.D., Fursova K.K. et al. // Microchem. J. 2024. V. 207. 111661. https://doi.org/10.1016/j.microc.2024.111661
  28. 28. Ulitin A.B., Kapralova M.V., Laman A.G., Shepelyakovskaya A.O., Bulgakova E.V., Fursova K.K. et al. // Dokl. Biochem. Biophys. 2005. V. 405. P. 437–440. https://doi.org/10.1007/s10628-005-0134-3
  29. 29. Calderwood S.K., Khaleque M.A., Sawyer D.B., Cloeca D.R. // Trends Biochem. Sci. 2006. V. 31. P. 164–172. https://doi: 10.1016/j.tibs.2006.01.006
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library