- PII
- S3034574XS0555109925030089-1
- DOI
- 10.7868/S3034574X25030089
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 61 / Issue number 3
- Pages
- 303-311
- Abstract
- A conjugate of 15-nm gold nanoparticles with brucellin, a polysaccharide-protein complex isolated from the Brucella vaccine strain, was obtained. The obtained conjugate was used to vaccinate white mice. The drug was administered intraperitoneally three times with an interval of 7 days. After that, all animals were injected with a suspension of cells of the Brucella abortus 82 vaccine strain. Using a cell proliferative test, it was shown that in the group of animals immunized with a brucellin conjugate with gold nanoparticles, phagocytic cells and splenocytes had higher metabolic activity compared to the group immunized with the native antigen. Moreover, this trend was enhanced after the introduction of the vaccine strain. The highest antibody titer was observed in animals immunized with a brucellin conjugate with gold nanoparticles (1 : 2560 initially and 1 : 10240 after stimulation with the vaccine strain). It is important that during the opsonophagocytic reaction, the level of opsonizing antibodies was very high, which helped neutralize bacteria persisting in the animals.
- Keywords
- наночастицы золота бруцеллин иммунизация антитела пролиферативная активность опсонофагоцитарная реакция
- Date of publication
- 12.01.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 32
References
- 1. Бухарин О.В. // Вестник Московского университета. Сер. 16. Биология. 2008. № 1. С. 6–13.
- 2. Евдокимова Н.В., Черненькая Т.В. // Клин. микробнол. антимикроб. химиотер. 2013. Т. 15. № 3. С. 192–197.
- 3. Bigger J.W. // Lancet. 1944. V. 244. P. 497–500. https://doi.org/10.1016/S0140-6736 (00)74210-3
- 4. Moyed H.S., Broderick S.H. // J. Bacteriol. 1986. V. 166. P. 399–403. https://doi.org/10.1128/jb.166.2.399-403.1986
- 5. Costerion J.W., Stewart P.S., Greenberg E.P. // Science. 1999. V. 284. P. 1318–1322. https://doi.org/10.1126/science.284.5418.1318
- 6. Бойченко М.Н., Кравцова Е.О., Буданова Е.В. Белав О.Ф., Малолетнева Н.В., Умбетова К.Т. // Эпидемиология и инфекционные болезни. 2020. Т. 25. № 1. С. 35–40. https://doi.org/10.17816/EID35180
- 7. Бойченко М.Н., Кравцова Е.О., Зверев В.В. // Журн. микробиол., эпидемиол. и иммунобиол. 2019. № 5. С. 61–72. https://doi.org/10.36233/0372-9311-2019-5-61-72
- 8. Pappas G., Akritidis N., Bosilkowski M., Tsianos E. // N. Engl. J. Med. 2005. V. 352. P. 2325–2336. https://doi.org/10.1056/NEIMra050570
- 9. Atluri V.L., Xavier M.N., de Jong M.F., den Hartigh A.B., Tsoits R.M. // Annu. Rev. Microbiol. 2011. V. 65. P. 523–541. https://doi.org/10.1146/annurev-micro-090110-102905
- 10. Al Dahouk S., Nöckler K. // Expert Rev. Anti-Infect. Ther. 2011. V. 9. P. 833–845. https://doi.org/10.1586/eri.11.55
- 11. Hans R., Yadav P.K., Zaman M.B., Poolla R., Thavasehvan D. // Front. Nanotechnol. 2023. V. 5. 1132783. https://doi.org/10.3389/fnano.2023.1132783
- 12. Galniska E.M., Zagórski J. // Ann. Agric. Environ. Med. 2013. V. 20. P. 233–238.
- 13. Cmapoegpoa C.A., Дыкман Л.А. // Российские нанотехнологии. 2013. Т. 8. № 11–12. С. 118–122. https://doi.org/10.1134/S1995078013060165
- 14. Ko J., Splitter G.A. // Clin. Microbiol. Rev. 2003. V. 16. P. 65–78. https://doi.org/10.1128/cmr.16.1.65–78.2003
- 15. Ficht T.A., Kahl-McDonagh M.M., Arenas-Gamboa A.M., Rice-Ficht A.C. // Vaccine. 2009. V. 27. Suppl. 4. P. D40–D43. https://doi.org/10.1016/j.vaccine.2009.08.058
- 16. Avila-Calderon E.D., Lopez-Merino A., Srivan-ganathan N., Boyle S.M., Contreras-Rodriguez A. // Biomed. Res. Int. 2013. V. 2013. 743509. https://doi.org/10.1155/2013/743509
- 17. Wang Z., Wu Q. // Curr. Pharm. Biotechnol. 2013. V. 14. P. 887–896. https://doi.org/10.2174/1389201014666131226123016
- 18. Abkar M., Loff A.S., Amani J., Eskandari K., Ramandi M.F., Salimian J. et al. // Vet. Res. Commun. 2015. V. 39. P. 217–228. https://doi.org/10.1007/s11259-015-9645-2
- 19. Lopes Chaves L., Dourado D., Prunache I.-B., Manuelle Marques da Silva P., Tacoyama dos Santos Lucena G., Cardoso de Souza Z. et al. // Int. J. Pharm. 2024. V. 659. 124162. https://doi.org/10.1016/j.ijpharm.2024.124162
- 20. Zhuo Y., Zeng H., Su C., Lv Q., Cheng T., Lei L. // J. Nanobiotechnology. 2024. V. 22. 480. https://doi.org/10.1186/s12951-024-02758-0
- 21. Liang J., Yao L., Liu Z., Chen Y., Lin Y., Tian T. // Small. 2025. V. 21. № 1. 2407649. https://doi.org/10.1002/smll.202407649
- 22. Goetz M., Thotaihi N., Zhao Z., Mittaggiri S. // Bioeng. Transl. Med. 2024. V. 9. № 4. e10663. https://doi.org/10.1002/btm2.10663
- 23. Fries C.N., Curvino E.J., Chen J.-L., Permar S.R., Fouda G.G., Collier J.H. // Nat. Nanotechnol. 2021. V. 16. № 4. P. 1–14. https://doi.org/10.1038/s41565-020-0739-9
- 24. Rajatiah P. // Discov. Med. 2024. V. 1. 58. https://doi.org/10.1007/s44337-024-00080-0
- 25. Baden A.J., Torres A.G. // Vaccines. 2024. V. 12. 313. https://doi.org/10.3390/vaccines12030313
- 26. Dykman L.A. // Expert Rev. Vaccines. 2020. V. 19. P. 465–477. https://doi.org/10.1080/14760584.2020.1758070
- 27. Sengupta A., Azharuddin M., Al-Otaibi N., Hinkula J. // Vaccines. 2022. V. 10. 505. https://doi.org/10.3390/vaccines10040505
- 28. Miauton A., Audran R., Besson J., Hajjami H.-M.-E., Karlen M., Warpelin-Decrausaz L. et al. // eBioMedicine. 2024. V. 99. 104922. https://doi.org/10.1016/j.ebiom.2023.104922
- 29. Засокина Т.Ю., Марков Е.Ю., Кашиовский А.И., Голубинский Е.П. // Журн. микробиол., эпидемиол. и иммунобиол. 2001. № 3. С. 65–69.
- 30. Staroverov S.A., Vyshchikov R.D., Bogatyrev V.A., Dykman L.A. // Int. Immunopharmacol. 2024. V. 133. 112121. https://doi.org/10.1016/j.intimp.2024.112121
- 31. Frens G. // Nat. Phys. Sci. 1973. V. 241. P. 20–22. https://doi.org/10.1038/physci241020a0
- 32. De Jesus A., Pusce C.M., Nguyen T., Keyhani-Nejad F., Gao P., Weinberg S.E., Ardehali H. // STAR Protoc. 2022. V. 3. 101668. https://doi.org/10.1016/j.xpro.2022.101668
- 33. Silver A.C. // J. Vis. Exp. 2018. V. 137. e58022. https://doi.org/10.3791/58022-v
- 34. Berridge M.V., Herst P.M., Tan A.S. // Biotechnol. Annu. Rev. 2005. V. 11. P. 127–152. https://doi.org/10.1016/S1387-2656 (05)11004-7
- 35. Shah K., Maghsoudlou P. // Br. J. Hosp. Med. 2016. V. 77. P. C98–C101. https://doi.org/10.12968/hmed.2016.77.7.C98
- 36. Дыкман Л.А., Боашвирев В.А. // Биохимия. 1997. Т. 62. № 4. С. 411–418.
- 37. Hufnagel M., Koch S., Kropec A., Huebner J. // Int. J. Food Microbiol. 2003. V. 88. № 2–3. P. 263–267. https://doi.org/10.1016/S0168-1605 (03)00189-2
- 38. Hu B.T., Kirch C., Harris S., Hildreth S.W., Madore D.V., Quataert S.A. // Clin. Diagn. Lab. Immunol. 2005. V. 12. № 2. P. 287–295. https://doi.org/10.1128/CDLL.12.2.287-295.2005
- 39. Maleki M., Sabatti M., Ardestani M.S., Talebzadeh A. // Artif. Cells Nanomed. Biotechnol. 2019. V. 47. P. 4248–4256. https://doi.org/10.1080/21691401.2019.1687490
- 40. Dwyer M., Gadjeva M. // Methods Mol. Biol. 2014. V. 1100. P. 373–379. https://doi.org/10.1007/978-1-62703-724-2_32
- 41. Salehi S., Hohn C.M., Penfound T.A., Dale J.B. // mSphere. 2018. V. 3. e00617—e00618. https://doi.org/10.1128/msphere.00617-18
- 42. Leung S., Collett C.F., Allen L., Lim S., Maniatis P., Bolcen S.J. et al. // Vaccines. 2023. V. 11. 1703. https://doi.org/10.3390/vaccines11111703
- 43. Kizilbash N., Suhail N., Soliman M., Elmagzoub R.M., Marsh M., Farooq R. // Curr. Pharm. Biotechnol. 2025. https://doi.org/10.2174/0113892010363803250110052220 (in press)
- 44. Mandal S. // JETIR. 2025. V. 12. P. a959—a974.
- 45. Teimouri H., Taheri S., Saidabad F.E., Nakazato G., Maghsoud Y., Babaei A. // Biomed. Pharmacother. 2025. V. 183. 117844. https://doi.org/10.1016/j.biopha.2025.117844