RAS BiologyПрикладная биохимия и микробиология Applied Biochemistry and Microbiology

  • ISSN (Print) 0555-1099
  • ISSN (Online) 3034-574X

Effect of Fermentation by Lactobacilli on the Functional — Technological Properties of Pea Protein Isolates

PII
S3034574XS0555109925030091-1
DOI
10.7868/S3034574X25030091
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 61 / Issue number 3
Pages
312-322
Abstract
The effect of fermentation with three bacterial preparations: BK-Uglich-K, BK-Uglich-AB and BK-Uglich-P (Russia) on solubility, emulsifying activity, emulsion stability, foaming and foam stability of isolates preparated from two varieties of peas was studied. It has been shown that fermentation with bacterial cultures can increase the solubility of isolates at pH 3 by 4 to 17.5 times, at pH 4 — more than 3 times, at pH 5 — by 23% to 80%, at pH 6 — by 27% to 43%, at pH 7 — by 18% to 27%. Fermentation increased the index of emulsifying activity of isolates at pH 5 by 37% (in one of the varieties), the stability index of the emulsion at pH 3 by 19% to 28%, at pH 4 — by 17%, at pH 5 — by 18% (in one of the varieties), at pH 6 — by 16% to 35%. Fermentation increased the foaming of isolates at pH 3 by 2.2 times, at pH 4 by 1.4 to 2.4 times, at pH 5 and 6 by 1.8 to 4 times, at pH 7 by 2.1 to 2.4 times; at the same time, the stability of the foam of isolates at pH 4 increased by 11% to 22%, at pH 5 — by 11% to 13%, at pH 6 — by 15% (in one of the varieties), at pH 7 — 28% (in one of the varieties). The results obtained made it possible to select bacterial preparations to improve the parameters of pea protein isolates intended for the manufacture of various food products: pea cola (BK-Uglich-P), analogues of fermented milk products and analogues of milk (BK-Uglich-AB).
Keywords
изолят белка гороха лактобактерии функционально-технологические свойства
Date of publication
05.07.2024
Year of publication
2024
Number of purchasers
0
Views
28

References

  1. 1. Meinlschmidt P., Ueberham E., Lehmann J., Schweiggert-Weisz U., Eisner P. // Food Chem. 2016. V. 205. P. 229–238. https://doi.org/10.1016/j.foodchem.2016.03.016
  2. 2. Schlegel K., Leidigkeit A., Eisner P., Schweiggert-Weisz U. // Foods. 2019. V. 8. P. 678. https://doi.org/10.3390/foods8120678
  3. 3. Lampart-Szczapa E., Konteczny P., Nogala-Katucka M., Walczak S., Kosowska J., Malinowska M. // Food Chem. 2006. V. 96. P. 290–296. https://doi.org/10.1016/j.foodchem.2005.02.0315
  4. 4. Liu Y., Zhu S., Li Y., Sun F., Huang D., Chen X. // Food Res. Int. 2023. V. 165. P. 112453. https://doi.org/10.1016/j.foodres.2022.112453
  5. 5. Schlegel K., Lidzba N., Ueberham E., Eisner P., Schweiggert-Weisz U. // Foods. 2021. V. 10. № 2. P. 281. https://doi.org/10.3390/foods10020281
  6. 6. Biscola V., de Olmos A. R., Choiset Y., Rabesona H., Garro M. S., Mozzi F., et al. // Beneficial Microbes. 2017. V. 8. № 4. P. 635–643. https://doi.org/10.3920/BM2016.0171
  7. 7. El Mecherfi K.-E., Lupi R., Cherkaoui M., Albuquerque M. A., Todorov S. D., Tranquet O. et al. // Probiotics and Antimicrobial Proteins. 2022. V. 14. № 5. P. 779-791. https://doi.org/10.1007/s12602-021-09808-1
  8. 8. Lu Q., Zuo L., Wu Z., Li X., Tong P., Wu Y. et al. // Food Chemistry. 2022. V. 366 P.130569. https://doi.org/10.1016/j.foodchem.2021.130569
  9. 9. Nordström E.A., Teixeira C., Montelius C., Jeppsson B., Larsson N. // Benef. Microbes. 2021. V. 12. № 5. P. 441–465. https://doi.org/10.3920/BM2020.019
  10. 10. Muñoz R., Rivas B.L., Rodríguez H., Esteban-Torres M., Reverón I. et al. // Int. J. Food Microbiol. 2024. V. 412. P. 110555. https://doi.org/10.1016/j.ijfoodmicro.2023.110555
  11. 11. García Arteaga V., Leffler S., Muranyi I., Eisner P., Schweiggert-Weisz U. // Curr. Res. Food Sci. 2020. V. 4. P. 1–10. https://doi.org/10.1016/j.crfs.2020.12.001
  12. 12. Vazquez-Munoz R., Dongari-Bagtzoglou A. // Front Oral Health. 2021. V. 2. P. 689382. https://doi.org/10.3389/froh.2021.689382
  13. 13. Функ Н.А., Иркинова А.Н. // Acta Biologica Sibirica. 2015. T. 1 . №1–2. C. 85–93. https://doi.org/10.14258/abs.v1i1-2.844
  14. 14. Стоянова Л.Г., Дбар С.Д., Полянская И.С. // Биотехнология. 2022. Т. 38. № 1. C. 3–12. https://doi.org/10.56304/S0234275822010070
  15. 15. Shiomo N., do Satto G.E.V., Daniel N., Jan G., Gagnaire V. // Food Res Int. 2023. V. 166. P. 112557. https://doi.org/10.1016/j.foodres.2023.112557
  16. 16. Higgins T.J., Chandler P.M., Randall P.J., Spencer D., Beach L.R., Blagrove R.J. et al. // J. Biol. Chem. 1986. V. 261. P. 11124–11130. https://doi.org/10.1016/S0021-9258 (18)67357-0
  17. 17. Stone A.K., Karalash A., Tyler R.T., Warkentin T.D., Nickerson N.T. // Food Research International. 2015. V. 76. P. 31–38. https://doi.org/10.1016/j.foodres.2015.01.017
  18. 18. Asen N.D., Aluko R.E. // Front Nutr. 2022. V. 9. P. 852225. https://doi.org/10.3389/fnut.2022.852225
  19. 19. Ivanova P., Kalaydzhiev H., Dessev T.T., Silva C.L.M., Rustad T., Chalova V.I.J. // Food Sci. Technol. 2018. V. 55. № 9. P. 3792–3798. https://doi.org/10.1007/s13197-018-3311-y
  20. 20. Kravchenko I.V., Furalyov V.A., Kostyleva E.V., Sereda A.S., Kurbatova E.I., Tsurikova N.V. et al. // Appl. Biochem. Microbiol. 2024. V. 60. № 1. P. 106–117. https://doi.org/10.1134/S0003683824010083
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library